ARTICLE IN PRESS

ISA Transactions ■ (■■■) ■■■-■■■

Contents lists available at ScienceDirect

ISA Transactions

journal homepage: www.elsevier.com/locate/isatrans

A discrete time-varying internal model-based approach for high precision tracking of a multi-axis servo gantry

Zhen Zhang^{a,b}, Peng Yan^{c,d,*}, Huan Jiang^c, Peiqing Ye^a

^a Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

^b Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipment and Control, Tsinghua University, 100084, China

^c School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

^d Key Laboratory of High-efficiency and Clean Mechanical Manufacturing, Ministry of Education, School of Mechanical Engineering, Shandong University,

Jinan, Shandong 250061, China

ARTICLE INFO

Article history: Received 4 September 2013 Received in revised form 27 January 2014 Accepted 28 April 2014 This paper was recommended for publication by Prof. Y. Chen

Keywords: Tracking Internal model Discrete time-varying systems Mechatronics

1. Introduction

One of the central topics in the control of mechatronics is trajectory tracking, which has important applications to a large class of high precision manipulations, such as machine tools [1], lithography machining in semiconductors [2], and track seeking of HDDs [3]. Significant efforts have been devoted to various aspects -of tracking control theory in the past several decades (see, for example [4-11]). As one of the most investigated approaches, the internal model-based control method has emerged as a fundamental technique for tracking and/or rejecting periodic signals generated by autonomous systems.

Although the internal model-based control theory for LTI systems has been well established [4], the results for LTV (Linear Time-Varying) systems are not available, due to the fundamental challenges of constructing a time-varying internal model to render the error-zeroing subspace invariant, and a robust time-varying stabilizer for the augmented time-varying system. We refer to [7-9] for some recent advances of internal model-based design for LTV systems.

* Corresponding author.

E-mail addresses: zzhang@tsinghua.edu.cn (Z. Zhang), pengyan2007@gmail.com (P. Yan).

http://dx.doi.org/10.1016/j.isatra.2014.04.006 0019-0578/© 2014 ISA. Published by Elsevier Ltd. All rights reserved.

ABSTRACT

In this paper, we consider the discrete time-varying internal model-based control design for high precision tracking of complicated reference trajectories generated by time-varying systems. Based on a novel parallel time-varying internal model structure, asymptotic tracking conditions for the design of internal model units are developed, and a low order robust time-varying stabilizer is further synthesized. In a discrete time setting, the high precision tracking control architecture is deployed on a Voice Coil Motor (VCM) actuated servo gantry system, where numerical simulations and real time experimental results are provided, achieving the tracking errors around 3.5% for frequency-varying signals.

© 2014 ISA. Published by Elsevier Ltd. All rights reserved.

It is worth mentioning that a systematic design method for the construction of time-varying internal model has been proposed in [10,11] in both input/output and state-space representations. The implementations of the above algorithms, however, still face the challenge of designing robust and loworder stabilizers. Notice that some attempts have been made via LPV (Linear Parameter-Varying) design approaches in continuous time settings, for example [12-14]. In order to make the control architecture more implementable for tracking sophisticated signals in real applications, it is desirable to cast the internal model-based control framework in a discrete time setting, which would greatly reduce the computational burdens and avoid numerical issues. Very recently a discrete time tracking controller designs have been proposed in [15,16], which are non-trivial extension of the results in continuous time settings [13,14].

In the present paper, we investigate the discrete time-varying internal model-based design by resorting to the recently developed parallel structure for time-varying internal model control [14], which can be considered as the counter part of the continuous time domain results in [14]. The tracking control algorithm is deployed for a high precision X–Y servo gantry driven by VCMs (Voice Coil Motors), which represents many important industrial applications such as laser beam steering, PCB laser marking, and advanced imaging systems [17].

Please cite this article as: Zhang Z, et al. A discrete time-varying internal model-based approach for high precision tracking of a multiaxis servo gantry. ISA Transactions (2014), http://dx.doi.org/10.1016/j.isatra.2014.04.006

ARTICLE IN PRESS

Z. Zhang et al. / ISA Transactions ■ (■■■■) ■■■-■■■

The rest of the paper is organized as follows: the problem formulation of the tracking problem under consideration and some preliminaries on a time-varying internal model design are briefly discussed in Section 2. In Section 3, a discrete time-varying robust stabilizer design is discussed based on the parallel connection with the internal model unit. The simulation and experimental results for controlling a servo gantry platform are given in Section 4 to demonstrate the proposed control algorithm in the discrete time-varying setting, followed by conclusions in Section 5.

2. Problem formulation and preliminaries

2.1. Problem formulation

We in this work consider discrete LTI plant models of the form

 $\begin{aligned} x(k+1) &= Ax(k) + Bu(k) \\ y(k) &= Cx(k) \\ e(k) &= y(k) + r(k), \end{aligned} \tag{1}$

with plant state $x \in \mathbb{R}^n$, control input $u \in \mathbb{R}$, output $y \in \mathbb{R}$, reference $r \in \mathbb{R}$, and regulated error $e \in \mathbb{R}$ satisfying the following assumption.

Assumption 2.1. The triplet (*A*, *B*, *C*) is controllable and observable.

The reference r(k) to be tracked is generated by an LTV exosystem of the form

w(k+1) = S(k)w(k)r(k) = Q(k)w(k)(2)

with exogenous state $w \in \mathbb{R}^{\rho}$. The exosystem under consideration is characterized by the following assumption.

Assumption 2.2. The trajectories w(k) in the forward and backward directions of time are stable in the sense of Lyapunov, and the pair $(Q(\cdot), S(\cdot))$ is uniformly observable.

Note that the problem of *asymptotically tracking* complicated signals generated by the time-varying exosystem (2) has yet to be solved due to its major difficulty of time-varying internal model-based design. Towards a complete and implementation orientated solution, a novel controller architecture is proposed in Fig. 1, which consists of a time-varying internal model unit and a time-varying robust stabilizer.

2.2. Preliminaries of a time-varying internal model construction

Recently, it is shown in [10,11] that for time-varying systems the design of the time-varying internal model can be constructed by a two-step way, i.e., (1) immersing the exogenous signal *r* in the place of u_r (see Fig. 1); (2) making the I/O mappings between the subsystem ($\Phi_1(\cdot)$, $\Psi_1(\cdot)$, $\Gamma_1(\cdot)$) and the plant model the same.

Along this thread, the design of a simple and low order stabilizer for the resulting time-varying systems remains a great challenge. Aiming at resolving this difficulty, we consider a novel compensator structure where the internal model unit and the stabilizer are interconnected in parallel (see Fig. 1, and the advantages of adopting such a paralleled structure will be clear in the later sections). From Fig. 1, it is readily seen that the internal model unit admits the following form:

Internal model subsystem 1:

$$\xi_1(k+1) = \Phi_1(k)\xi_1(k) + \Psi_1(k)u(k)$$

$$u_r(k) = \Gamma_1(k)\xi_1(k)$$
and Internal model subsystem 2:

$$\begin{split} \xi_2(k+1) &= \varPhi_2(k)\xi_2(k) + \varPsi_2(k)(-u_r(k)) \\ u_{\rm im}(k) &= \Gamma_2(k)\xi_2(k) + D_2(k)(-u_r(k)) \end{split} \tag{4}$$

with the internal model state $(\xi_1, \xi_2) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$, embedded input $u_r \in \mathbb{R}$, and internal model input $u_{im} \in \mathbb{R}$.

Note that the detailed design of system (3)-(4) can be referred to [11], and the main results are listed as follows:

(1) By solving the following *algebraic* Sylvester equation:

$$(\mathcal{O}_{\varPhi_1(k)} \ \mathcal{C}_{\varPsi_1(k)}) \begin{pmatrix} 1\\ q(k)\\ p(k) \end{pmatrix} = \mathcal{O}_{\mathcal{S}(k)} \begin{pmatrix} 1\\ q(k) \end{pmatrix},$$

the signal *r* is embedded in the place of u_r ; where q(k) and p(k) collect time-varying coefficients of $\Phi_2(\cdot)$ and $\Gamma_2(\cdot)$ in controller canonical form respectively, and $\mathcal{O}_{5(k)}$ and $\mathcal{C}_{\Psi_1(k)}$ are defined in Appendix equation (24), and $\mathcal{O}_{\Phi_1(k)}$ is defined similar to that of $\mathcal{O}_{5(k)}$. More detailed explanations are referred to [11] and an illustrative example is given in Section 4.2 for the reader's convenience.

(2) By choosing the nominal values of the plant model as the subsystem (Φ₁(·), Ψ₁(·), Γ₁(·)), the exosystem with the required error zeroing input u_{ff}, i.e.,

$$w(k+1) = S(k)w(k)$$

$$u_{\rm ff}(k) = R(k)w(k)$$
(5)

is immersed [18,10,11] into

. . .

$$\begin{pmatrix} \xi_1(k+1) \\ \xi_2(k+1) \end{pmatrix} = \Phi(k) \begin{pmatrix} \xi_1(k) \\ \xi_2(k) \end{pmatrix}$$
$$u_{\rm im}(k) = \Gamma(k) \begin{pmatrix} \xi_1(k) \\ \xi_2(k) \end{pmatrix},$$
(6)

where

1 10 10

$$\begin{split} \varPhi(k) &= \begin{pmatrix} \varPhi_1(k) - \Psi_1(k) D_2(k) \Gamma_1(k) & \Psi_1(k) \Gamma_2(k) \\ & -\Psi_2(k) \Gamma_1(k) & \varPhi_2(k) \end{pmatrix}, \\ \Gamma(k) &= (-D_2(k) \Gamma_1(k) \ \Gamma_2(k)), \end{split}$$

10 .

and $u_{im}(k)$ is the desired input to keep error e(k) = 0 (see [11]

Please cite this article as: Zhang Z, et al. A discrete time-varying internal model-based approach for high precision tracking of a multiaxis servo gantry. ISA Transactions (2014), http://dx.doi.org/10.1016/j.isatra.2014.04.006 Download English Version:

https://daneshyari.com/en/article/5004734

Download Persian Version:

https://daneshyari.com/article/5004734

Daneshyari.com