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a b s t r a c t

A new design method of fractional-order proportional-integral controllers is proposed based on
fractional calculus and Bode's ideal transfer function for a first-order-plus-dead-time process model.
It can be extended to be applied to various dynamic models. Tuning rules were analytically derived to
cope with both set-point tracking and disturbance rejection problems. Simulations of a broad range of
processes are reported, with each simulated controller being tuned to have a similar degree of robustness
in terms of resonant peak to other reported controllers. The proposed controller consistently showed
improved performance over other similar controllers and established integer PI controllers.

& 2013 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Fractional-order dynamic systems are useful in presenting
various stable physical phenomena with anomalous decay [1].
Fractional calculus (i.e. fractional integro-differential operators) is
a generalization of integration and differentiation to non-integer
orders. It is obtained from ordinary calculus by extending ordinary
differential equations (ODE) to fractional-order differential equa-
tions (FODE). Similarly, a fractional-order proportional-integral-
derivative (FOPID) controller is a generalization of a standard
(integer) PID controller; its output is a linear combination of the
input and the fractional integral or derivative of the error [2].
It affords more flexibility in PID controller design due to its five
controller parameters (instead of the standard three): proportional
gain, integral gain, derivative gain, integral order, and derivative
order. However, the tuning rules of fractional-order PID (FOPID)
controllers are much more complex than those of standard
(integer) PID controllers with only three parameters. Several
design methodologies of FOPID controllers have been introduced
to facilitate their use: Bode first reported fractional structures in
feedback-loops [3,4]. This was extended by Barbosa et al. [5], who
reported a feedback amplifier obtained by considering a feedback-
loop in terms of the performance of a closed-loop that was
invariant to changes of amplifier gain. However, this concept was

not rigorously developed and remained neglected for decades.
Oustaloup [6] introduced fractional-order algorithms for the con-
trol of dynamic systems based on non-integer derivatives and
demonstrated significant improvement of CRONE (Commande
Robuste d'Ordre Non Entier) controllers over integer PID control-
lers. CRONE controllers are obtained using a rational form and the
major differences between the three generations lie in the design
of the open-loop, the slope of which depends on consideration of
plant uncertainty. The generalized PID controller, PIλDμ, that
involves a fractional-order integrator (λ) and a fractional-order
differentiator"body (m), was suggested by Podlubny [7]. The two
extra parameters (λ and m) give this type of controller improved
flexibility over integer PID controllers, giving it much industrial
applicability [8,9]. Tuning methods of PIλDμ controllers can be
generally classified as either analytic or heuristic [10,11].

Most analytical methods are tuned by considering the non-
linear objective function, which is depended on user-imposed
specifications [5,11–14]. Barbosa et al. [5] introduced the tuning of
integer PID controller by considering the system similar to a
fractional-order system that is done by using the ISE error
minimization. Monje et al. [13] proposed five conditions taking
into account phase and gain margins specifications, as well as the
constraints over the sensitivity functions. Valério and Da costa [11]
considered Ziegler-Nichols-type tuning rules for the first order
plus time delay (FOPDT) processes. In addition, F-MIGO (i.e.,
peak sensitivity constrained integral gain optimization for the
fractional-order PI control system) method [14] was developed for
the FOPDT class of dynamic systems, which is generalized to
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handle the FOPI control system from the so-called MIGO (i.e. Ms, the
maximum sensitivity constrained integral gain optimization) deve-
loped by Åström et al. [15–17]. In accordance with the F-MIGO
method, the Nyquist plot of the open-loop transfer function lies
outside the circle such that it encloses both the Ms and Mp circles.
This circle has the center and radius as shown in [14]. Furthermore,
Vinagre [18] suggested setting λ¼ μ and imposing a phase margin at
gain crossover frequency. Caponetto et al. [19] proposed a method
selecting freely a λ¼ μ41, which is allowed freely choosing con-
troller parameters by imposing a phase margin at gain crossover
frequency. A fractional PI controller was tuned by the combination of
gain and phase margin requirements with a flat phase for the open-
loop at critical frequency introduced by Chen et al. [20]. The internal
model control (IMC) methodology can be also used in some cases to
obtain PID or fractional PID controllers [11].

This work proposes a new analytic method of FOPI controller
design for enhanced set-point tracking and disturbance rejection
responses of processes with time delays. It is based largely on
fractional calculus and Bode's ideal transfer function. By using
frequency domain, the proposed FOPI tuning rules can be directly
derived for first-order-plus-dead-time (FOPDT) models and can be
applied to various process models.

The paper is organized as follows. The fundamentals of
fractional calculus and their application for obtaining the FOPI
controller are given in Section 2. In Section 3, the generalized
FOPI controller tuning rules and some important robustness
and performance indices are introduced. Section 4 gives some
illustrated examples, where a comparison with other design
methods is presented. Some important guidelines are introduced
in Section 5. Conclusions are given in Section 6.

2. Preliminaries

This section introduces some fundamentals of fractional calculus,
the problem statement required to understand fractional systems,
and the examined controller.

2.1. Fractional calculus

Fractional calculus [21] is a generalization of ordinary calculus.
It develops a functional operator, D, associated to the order of an
operation v ðv∈ℜÞ not restricted to integers that generalizes usual
derivatives (for positive v) and integrals (for negative v). There are
various definitions of fractional differentiation. However, the most
commonly used is the Riemann–Liouville definition [9,21], which
is generalized by two equalities easily proven for integer orders:

aD
v
t f ðtÞ ¼

1
Γðn−vÞ

dn

dtn

Z t

a

f ðτÞ
ðt−τÞv−nþ1 dt;n−1ovon ð1Þ

where Γð�Þ denotes Euler's gamma function. a and t are the limits.
Note that the Laplace transform of the fractional derivative/

integral in (1) follows the rule for zero initial condition for order
v ð0ovo1Þ:
LfaD7v

t f ðtÞg ¼ s7vFðsÞ ð2Þ
The initial conditions imply that a dynamic system described

by differential equations involving fractional derivatives gives rise
to transfer functions with fractional powers of s. This is described
further elsewhere [21].

2.2. Integer order approximation

For fractional-order controllers to be used for simulation and
hardware applications with transfer functions that involve fractional
orders of s, the transfer function should be approximated as an

integer-order transfer function with similar behavior, which includes
an infinite number of poles and zeros. Nevertheless, reasonable
approximations can be obtained with finite numbers of poles and
zeros. In this case, the Oustaloup continuous integer-order approx-
imation [6] based on the recursive distribution of poles and zeros is
employed here:

sv≅k ∏
N

n ¼ 1

1þ ðs=ωz;nÞ
1þ ðs=ωp;nÞ

; v40 ð3Þ

Eq. (3) is valid over the frequency range ½ωl;ωh�, where the gain, k,
should be adjusted for both sides of (2) to have unity gain at the gain
crossover frequency, sv (i.e. ωc¼1 rad/s). Eight poles and zeros (i.e.
N¼8) is chosen, since ωl and ωh are respectively 0:001ωc and
1000ωc . It is important to note that low values result in simpler
approximations, but may cause ripples in both gain and phase
behaviors. The ripples can be functionally neglected by increasing
N, and hence also increasing computation costs. In addition, fre-
quencies of zeroes and poles in (3) are given as follows:

ωz;l ¼ωl
ffiffiffi
η

p ð4aÞ

ωp;n ¼ ωz;nα; n¼ 1;2;…N ð4bÞ

ωp;nþ1 ¼ωp;nη; n¼ 1;2;…N−1 ð4cÞ

α¼ ðωh=ωlÞv=N ð4dÞ

η¼ ðωh=ωlÞð1−vÞ=N ð4eÞ
It can be dealt with inverting (3) when vo0. But in the case

jvj41, the approximation will be unsatisfactory. Therefore, it is
common to split fractional power of s as follows:

sv ¼ snsδ; v¼ nþ δ∧n∈Ζ∧δ∈½0;1� ð5Þ

2.3. FOPI controller

Fractional calculus gives the fractional integro-differential
equation of a FOPI controller as:

uðtÞ ¼ KCeðtÞ þ KID
−λ
t eðtÞ; ðλ40Þ ð6Þ

where KC and K I represent the proportional and integral terms of
the FOPI controller, respectively. λ is the fractional order of the
integral.

The continuous transfer function of the FOPI controller can be
obtained by Laplace transformation:

GCðsÞ ¼ KC þ
K I

sλ
ð7Þ

The FOPI controller has three parameters (KC,K I, and λ) to tune,
since the fractional order λ is not necessarily integer. An integer PI
controller is a special case of this FOPI controller where λ¼ 1: This
expansion provides more flexibility in achieving control objectives.
However, it is often complicated by requiring a non-linear objec-
tive function and user-defined constraints to obtain controller
parameters that satisfy some specified performance criterion.

By substituting s¼ jω into (7), the FOPI controller is represented
in the frequency domain as:

GCðjωÞ ¼ KC þ
K I

ðjωÞλ ð8Þ

The fractional power of jω can be written as

ðjωÞλ ¼ ωλjþ ¼ωλ½ej½ðπ=2Þþ2nπ��λ ¼ ωλ½ej½ðπ=2Þλþ2nλπ�� ð9Þ
where n¼ 0; 7ð1=λÞ; 7 ð2=λÞ; :::; 7ðm=λÞ. Therefore, the following
convenient form is obtained:

ðjωÞλ ¼ ωλð cos γI þ j sin γIÞ; γI ¼
πλ

2
ð10Þ
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