
A policy iteration approach to online optimal control of
continuous-time constrained-input systems

Hamidreza Modares a,n, Mohammad-Bagher Naghibi Sistani a, Frank L. Lewis b

a Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111, Iran
b University of Texas at Arlington Research Institute, 7300 Jack Newell Blvd. S., Ft. Worth, TX 76118, USA

a r t i c l e i n f o

Article history:
Received 15 March 2012
Received in revised form
23 January 2013
Accepted 6 April 2013
Available online 24 May 2013

Keywords:
Optimal control
Reinforcement learning
Policy iteration
Neural networks
Input constraints

a b s t r a c t

This paper is an effort towards developing an online learning algorithm to find the optimal control
solution for continuous-time (CT) systems subject to input constraints. The proposed method is based on
the policy iteration (PI) technique which has recently evolved as a major technique for solving optimal
control problems. Although a number of online PI algorithms have been developed for CT systems, none
of them take into account the input constraints caused by actuator saturation. In practice, however,
ignoring these constraints leads to performance degradation or even system instability. In this paper, to
deal with the input constraints, a suitable nonquadratic functional is employed to encode the constraints
into the optimization formulation. Then, the proposed PI algorithm is implemented on an actor–critic
structure to solve the Hamilton–Jacobi–Bellman (HJB) equation associated with this nonquadratic cost
functional in an online fashion. That is, two coupled neural network (NN) approximators, namely an actor
and a critic are tuned online and simultaneously for approximating the associated HJB solution and
computing the optimal control policy. The critic is used to evaluate the cost associated with the current
policy, while the actor is used to find an improved policy based on information provided by the critic.
Convergence to a close approximation of the HJB solution as well as stability of the proposed feedback
control law are shown. Simulation results of the proposed method on a nonlinear CT system illustrate the
effectiveness of the proposed approach.

& 2013 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The optimal control of continuous-time (CT) nonlinear systems is
a challenging subject in control engineering. Solving such a problem
requires solving the Hamilton–Jacobi–Bellman (HJB) equation [1],
which has remained intractable in all but very special problems. This
has inspired researchers to present various approaches for obtaining
approximate solutions to the HJB equation.

One of the existing approximation approaches for solving the
HJB equation is a power-series based method [2,3]. This approach
separates the system nonlinearities into a power-series and then,
to avoid prohibitive computational effort, computes local esti-
mates by using only a few terms of the series. The second
approach to approximate the HJB solution is the state-dependent
Riccati equation (SDRE) [4,5]. This approach is the extension of the
well-known Riccati equation to nonlinear systems. But solving the
SDRE is much more difficult than solving the Riccati equation,

because the coefficients in the SDRE are functions of the states
instead of being constant-valued as in the Riccati equation.

Another elegant approach to approximate the HJB solution is
policy iteration (PI) [6], where an iterative process is used to find
a sequence of approximations converging to the solution of the HJB
equation. PI is a class of reinforcement learning (RL) [7,8] methods
that have two-step iterations: policy evaluation and policy improve-
ment. In the policy evaluation step, the cost associated with a control
policy is evaluated by solving a nonlinear Lyapunov equation (LE).
In the policy improvement step, the algorithm finds an improved
policy under which the system performs better. These two steps are
repeated until the policy converges to a near-optimal policy. Con-
siderable research has been conducted for approximating the HJB
solution of discrete-time systems using PI algorithms [9–30]. How-
ever, due to the complex nature of the HJB equation for nonlinear CT
systems, only few results are available [31–38].

The first practical PI algorithm developed for nonlinear CT
systems was proposed by Beard [31]. He utilized the Galerkin
approximation method to find approximate solutions to the LE in
the policy evaluation step of the PI algorithm. However, Galerkin
approximation method requires the evaluation of numerous inte-
grals, which is computationally intensive [32]. A computationally
effective algorithm to find near-optimal control laws was presented
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by Abu-Khalaf and Lewis [32]. They used neural network (NN)
approximators to approximate solutions to the LE. Their results
showed the suitability of NN approximators for PI methods.
Although efficient, both methods presented in [31,32] are offline
techniques. Developing online learning algorithms for solving
optimal control problems is of great interest in the control systems
society, since in this manner additional approaches such as adaptive
control can be integrated with the optimal control to develop
adaptive optimal control algorithms for systems with parametric
uncertainties or even unknown dynamics.

An online PI algorithm was first presented by Doya [33] for
optimal control of CT systems. Nevertheless, this algorithm was not
shown to guarantee the stability of the control system. Murray et al.
[34], proposed a PI algorithmwhich converges to the optimal control
solution without using an explicit, a priori obtained, model of the
drift dynamics of the system. However, it requires measurements of
the state derivatives. Vrabie and Lewis [35] presented an online PI
algorithm which solves the optimal problem, using only partial
knowledge about the system dynamics and without requiring
measurements of the state derivatives. However, the inherently
discrete nature of their controller prevents the development of
stability proof of the closed-loop system. Vamvoudakis and Lewis
[36] proposed an online algorithm based on PI algorithm with
guaranteed closed-loop stability for CT systems with completely
known dynamics. Inspired by the work in [36], Dierks and Jagan-
nathan [38] presented a single online approximator-based optimal
scheme with guaranteed stability. Moreover, motivated by the work
of [36], Bhasin et al. [37] presented an online PI algorithm where the
requirement of knowing the system drift dynamics was eliminated
by employing a NN to identify the drift dynamics. Although efficient,
none of these online PI algorithms takes into account the input
constraints caused by actuator saturation.

The control of systems subject to input constraints is of
increasing importance, since almost all actuators in real-world
applications are subject to saturation. In fact, control design
methods that ignore the constraints on the magnitude of the
control inputs may lead to performance degradation and even
system instability. Hence, during the control development, due
attention must be paid to the constraints which the control signals
must comply with. This issue is of more importance when one
designs an online learning control method, because instability
may easily occur as a result of continuing online adaptation and
learning during input saturation. This motivates our research into
incorporating the actuator saturation limits when designing a PI
algorithm for optimal control of CT systems.

This paper is concerned with developing an online optimal
control method for CT systems in the presence of constraints on
the input amplitude. To deal with actuator saturation, a suitable
nonquadratic functional is used to encode the constraints into the
optimization formulation. Then, a PI algorithm on an actor–critic
structure is developed to solve the associated HJB equation online.
That is, the optimal control law and the optimal value function are
approximated as the output of two NNs, namely an actor NN and a
critic NN. The problem of solving the HJB equation is then
converted to simultaneously adjusting the weights of these two
NNs. Given an arbitrarily nonoptimal control policy by the action
network, the critic network guides the action network toward the
optimal solution by successive adaptation. The closed-loop stabi-
lity of the overall system and boundedness of the actor and critic
NNs weights are assured by using Lyapunov theory. To our
knowledge, this is the first treatment in which the input con-
straints are considered during the design of an online PI learning
algorithm for solving the optimal control problem. Note that,
although in [39] the authors presented an actor–critic algorithm
for control of discrete-time systems with input constraints, their
method does not converge to the optimal feedback control

solution for a user-defined cost function, as it only minimizes a
norm of the output error.

This paper is organized as follows. In the next section, some
notations and definitions are given. An overview of optimal
control for CT systems with input constraints is given in Section
3. This requires preliminary offline design. The development and
implementation of the proposed online PI algorithm is presented
in Section 4. Sections 5 and 6 present simulation results and
conclusion, respectively.

2. Preliminaries

2.1. Notations and definitions

Throughout the paper, ℜ denotes the real numbers, ℜn denotes
the real n vectors, ℜm�n denotes the real m� n matrices, I denotes
the identity matrix with appropriate dimension, for a scalar v, jvj
denotes the absolute value of v, for a vector x, ∥x∥ indicates the
Euclidean norm of x, for a matrix M, ∥M∥ indicates the induced
2-norm of M, and trfMg denotes the trace of the matrix M. With
sgn ðzÞ we denote the sign function defined as follows

sgn ðzÞ ¼ 1 z≥0
−1 zo0

�

Finally, we write ð:ÞT to denote transpose and λminð:Þ to denote
the minimum eigenvalue of a Hermitian matrix.

Lemma 1. (Young's inequality) [40]: For any two vectors x and y, it
holds that

xTy≤
∥x∥2

2
þ ∥y∥2

2
: ð1Þ

Definition 1. (Uniformly ultimately bounded (UUB) stability)
[41]: Consider the nonlinear system (2)

_x¼ f ðx; tÞ ð2Þ
with state xðtÞ∈ℜn. The equilibrium point xe is said to be UUB if
there exists a compact set Ω⊂ℜn so that for all x0⊂Ω, there exists a
bound B and a time TðB; x0Þ such that ∥xðtÞ−x0∥≤B for all t≥t0 þ T .
That is, after a transition period T , the state remains within the ball
of radius B around x0.

Definition 2. (Exponential stability) [42]: The equilibrium state
xe of the system (2) is exponentially stable if there exists an η40,
and for every ε40 there exists a δðεÞ40 such that
jxðt; t0; x0Þ−xej≤ε e−ηðt−t0Þ for all t4t0, whenever jx0−xejoδðεÞ.

Definition 3. (Zero-state observability) [41]: System (2) with
measured output y¼ hðxÞ is zero-state observable if yðtÞ≡0 ∀t≥0
implies that xðtÞ≡0 ∀t≥0.

Definition 4. (Persistently exciting (PE) signal) [42]: The
bounded vector signal zðtÞ is PE over the interval ½t; t þ T1� if there
exists T140, γ140, and γ240, such that for all t.

γ1I≤
Z tþT1

t
zðτÞ zT ðτÞ dτ≤γ2 I ð3Þ

Definition 5. (Lipschitz) [42]: A function f : ½a; b�-R is Lipschitz
on ½a; b� if jf ðx1Þ−f ðx2Þj≤kjx1−x2j for all x1; x2∈½a;b�, where k≥0 is a
constant.

2.2. Function approximation by neural networks

The NN universal approximation property indicates that any
continuous function f ðxÞ can be approximated arbitrary closely
using a two-layer NN with appropriate weights on a compact set.
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