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a b s t r a c t

This paper develops a robust divided difference filtering approach based on the concept of Desensitized
Kalman Filtering. The filters are formulated using a minimum variance cost function, augmented with a
penalty function consisting of a weighted norm of the state sensitivities. Solutions are provided for first
and second-order Divided Difference Filters. The resulting filters are non-minimum variance but exhibit
reduced sensitivity to deviations in the assumed plant model parameters. The proposed algorithms are
demonstrated using Monte Carlo simulation techniques for an induction motor state estimation problem
with parameter uncertainties.
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1. Introduction

The Kalman Filter and its variations such as the Extended
Kalman Filter (EKF) are well-known state estimation techniques in
wide use in a variety of applications such as vehicle navigation,
target tracking, automotive vehicle state estimation, chemical
processing, atmospheric data assimilation, and many other areas.
Over the last decade, the class of Sigma Point Kalman Filters (SPKF)
[1–4] have emerged as replacements for the industry standard EKF
for nonlinear estimation problems. These Sigma Point Kalman
Filters include the Central Difference Filter (CDF) [1], the Divided
Difference Filter (DDF) [2], and the Unscented Kalman Filter (UKF)
[3,4]. Like the basic Kalman Filter, the SPKFs seek to determine a
state estimate that minimizes the posterior covariance. The SPKF
technique differs from the standard Kalman Filter in the sense that
the SPKFs do not linearize the dynamic system for the propaga-
tion, but instead propagate a cluster of points centered around the
current estimate to form improved approximations of the condi-
tional mean and covariance. Specifically, the CDF makes use of
first-order finite-difference approximations of the plant and mea-
surement models. The DDF makes use of multi-dimensional
interpolation formulas, rather than the Taylor series expansions
in use in Kalman Filter algorithms. The UKF uses the Unscented
Transformation, which attempts to approximate the prior and
posterior distributions, rather than the nonlinear plant model,

using a deterministic sampling approach. As a result of these
approaches, the class of SPKFs do not require knowledge or
existence of the partial derivatives of the system dynamics and
measurement equations. SPKFs have the additional advantage over
the basic Kalman Filter in that they can easily be extended to
determine second-order solutions to the minimum variance filter-
ing problem, which increases the estimation accuracy when the
system and/or measurement equations are nonlinear.

The filter performance can be extremely sensitive to deviations
in the assumed plant and measurement models. Such deviations
can be in the form of model parameter uncertainty or uncertain-
ties in the assumed process and measurement noise statistics,
such as non-Gaussian errors. Past research has been conducted
to develop robust filtering approaches that are less sensitive to
deviations in the assumptions inherent to the Kalman Filter. One
of the first approaches proposed for dealing with parameter
uncertainty was introduced by Schmidt [5]. Schmidt proposes
two techniques, the first being a state augmentation approach in
which the uncertain parameters are estimated along with the
states in the filter. In the second approach, the parameters are
considered as structured process and/or measurement noise, and
the state estimate error covariance matrix is adjusted in order to
account for the resulting uncertainties. The latter method has
become known as the Kalman-Schmidt Filter [6] or the “consider”
Kalman Filter [7]. This type of filter has advantages over the state
augmentation approach in that reduced-order filters can be
utilized, and potential observability problems can be mitigated
by accounting for the uncertainty in the parameters rather than
attempting to estimate them directly. Another drawback of the
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state augmentation approach is that it can introduce nonlinearity
when applied to linear systems, which implies that the resulting
filters are suboptimal. A notionally similar approach to the
Kalman-Schmidt filter is taken in Ref. [8], where reduced-order
robust linear filters are derived by treating the parameter uncer-
tainties as state and measurement dependent random errors.
Recently, Kai et al. [9] have developed a robust Kalman Filter
solution for nonlinear discrete-time systems with stochastic multi-
plicative uncertainty in the state dynamics and measurement
models.

Much attention has been given to the development of robust
filters with norm-bounded parameter uncertainty [10–15]. Speci-
fically, Xie et al. [10] develop a robust steady-state Kalman Filter
design for linear discrete-time systems with norm-bounded para-
meter uncertainty in the state and output matrices. A similar
approach to the robust H∞ filtering problem with norm-bounded
parameter uncertainty are investigated in Ref. [11]. Dong and You
[12] develop a robust Kalman Filter for linear discrete-time
systems with norm-bounded parameter uncertainty in the state
and output matrices, with unknown but bounded uncertainty in
the process and measurement noise statistics. Souto and Ishihara
[13] extend the work of Dong and You to the case of unknown
correlations between the process and measurement noise.
Recently, Ref. [14] develops a robust Kalman Filter for norm-
bounded parameter uncertainties using a modified Riccati equa-
tion approach. Mahmoud et al. [15] investigates robust filtering
approaches for linear systems with Markovian jump parameters,
with norm-bounded parameter uncertainties in the state and
measurement equations. A State Dependent Riccati Equation
approach has also recently been applied to the H∞ filtering
problem with norm-bounded parameter uncertainty in Ref. [16].

Other developments of robust filtering approaches include the
Smooth Variable Structure Filter (SVSF) derived based on the
concepts of variable structure control [17]. The SVSF assumes a
predictor-corrector structure, and tries to guide the state estimates
along a so-called existence subspace whose width is bounded by
the process and measurement noise levels. An approach based
on Multiple Model Adaptive Estimation (MMAE) is proposed on
Ref. [18]. In this approach, a bank of Kalman Filters with different
assumptions on the parameter values are implemented in parallel.
A weighted average of the filter outputs forms the basis for the
state estimate. Ref. [19] proposes a model parameter estimation
approach based on the principles of fuzzy control, and a neural
network model identification approach is developed in Ref. [20].
Robust filtering for problems with faulty measurement data is
investigated in Refs. [21,22]. Estimators for classes of problems
with time delays are developed in Refs. [23,24].

This paper proposes a robust Divided Difference Filter for
systems with vector parameter uncertainty, without known
bounds or known statistical information. The solution is obtained
using a robust optimal control technique known as Desensitized
Optimal Control (DOC). Historically, optimal control problems are
formulated such that the user specifies a single scalar cost index.
Then, optimization techniques are applied to generate control
logic and the associated optimal solution that yields the best
performance for exactly the cost function and model configuration
that were assumed in the calculation. In practice, however, the
real-life data often differs from the assumed model, and it is
desirable if certain user-specified characteristics of the optimal
solution, such as performance in terms of the original cost index or
the width of certain safety margins associated with the obtained
control logic, did not deteriorate too rapidly as the model is
changed, or as external perturbations are added. In practice one
would prefer a control law that sacrifices a reasonable amount of
performance for the nominal case, in favor of reducing the rate at
which user-defined safety and performance measures deteriorate

when some system parameters are changed or perturbations are
experienced. The DOC methodology is a set of theory that enables
the design of such trade-off solutions in an optimal fashion.

The DOC methodology was originally introduced in 1996 by
Seywald and Kumar in Ref. [25]. The basic idea is to embed the
reference solution in a field of neighboring paths onto which the
solution is allowed to “jump” (governed by a linear feedback
control law) in case perturbations are encountered along the
nominal trajectory. When a physical quantity is identified whose
sensitivity with respect to perturbations is to be reduced, the
associated sensitivity can be derived mathematically. The objective
of reducing the sensitivity can be represented by a performance
index Js. Then, Js and the original performance index J0 are
minimized concurrently, resulting in a multi-objective optimiza-
tion problem. A penalty factor c0 is introduced to consolidate the
two competing objectives into one performance index, given as

J ¼ J0 þ c0Js ð1Þ
Minimizing J results in a different nominal trajectory, which is an
optimal compromise between sacrificing the performance and
gaining sensitivity reduction.

This methodology has been extended based on the original
formulation, and been successfully applied to a wide range of
trajectory optimization problems. Ref. [26] addresses the optimal
control problem with control constraints and a vertical rocket
landing problem, where trajectories are obtained that have
reduced sensitivity to the perturbation on the rocket thrust level.
Ref. [27] presents optimal orbital insertion trajectories such that
the sensitivity of the achieved target orbit with respect to the
perturbations on the air density is reduced. Ref. [28] desensitized
the Mars Entry trajectory with respect to initial orbit insertion
errors and the atmospheric model uncertainties, and in Ref. [29]
the DOC methodology is applied to the powered descent phase of
the Mars pinpoint landing problem.

It is expected that the main characteristic of the DOC approach,
which is the inclusion of the sensitivity penalty in the perfor-
mance index, can be extended to the robust filter design problem
such that the performance sensitivity of the filters with respect to
the model parameter uncertainties can be reduced. Indeed, in
previous papers by the authors [30,31] the DOC approach has been
successfully incorporated into the Extended Kalman Filter and
Unscented Kalman Filter, respectively. The resulting desensitized
filters are non-minimum variance but exhibit reduced sensitivity
with respect to parameter uncertainties. In some respects, the
desensitized filtering approach is similar to the Kalman–Schmidt
Filter [5] in that parameter uncertainties are treated in the filter
algorithm without the need for dual state-parameter estimation.
An important distinction between the two approaches is that the
Kalman–Schmidt filter requires that the statistics of the parameter
uncertainties are known whereas the new desensitized filtering
approach does not.

The purpose of this paper is to extend the desensitized Kalman
Filtering approach to the class of Divided Difference Filters [2].
The desensitization of this class of filters follows the same basic
methodology developed in [30], which incorporates a weighted
norm of the state sensitivities to the minimum-variance cost
function used in the DDF. Note that this paper considers only the
robustness of the divided difference filtering algorithms to the
case of uncertain parameters. Other works such as [32,33] address
the robustness of the Divided Difference Filters to the problems of
uncertain non-Gaussian noise components.

The remainder of this paper is organized as follows. Section 2
describes the Divided-Difference Filtering algorithms and how the
Desensitized Optimal Filtering approach can be applied to develop
robust estimators for systems with parameter uncertainty. Speci-
fically, Section 2.1 develops the solution for the First-Order DDF
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