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a b s t r a c t

This paper investigates the problem of global finite-time stabilization in probability for a class of
stochastic nonlinear systems. The drift and diffusion terms satisfy lower-triangular or upper-triangular
homogeneous growth conditions. By adding one power integrator technique, an output feedback
controller is first designed for the nominal system without perturbing nonlinearities. Based on
homogeneous domination approach and stochastic finite-time stability theorem, it is proved that the
solution of the closed-loop system will converge to the origin in finite time and stay at the origin
thereafter with probability one. Two simulation examples are presented to illustrate the effectiveness of
the proposed design procedure.

& 2014 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the problem of finite-time stabiliza-
tion via output feedback for a class of stochastic nonlinear systems
described by

dx1ðtÞ ¼ x2ðtÞ dtþ f 1ðxðtÞ;uðtÞÞ dtþgT1ðxðtÞ;uðtÞÞ dωðtÞ;
dx2ðtÞ ¼ x3ðtÞ dtþ f 2ðxðtÞ;uðtÞÞ dtþgT2ðxðtÞ;uðtÞÞ dωðtÞ;
⋮

dxnðtÞ ¼ uðtÞ dtþ f nðxðtÞ;uðtÞÞ dtþgTnðxðtÞ;uðtÞÞ dωðtÞ;
yðtÞ ¼ x1ðtÞ ð1Þ
where xðtÞ ¼ ðx1ðtÞ;…; xnðtÞÞT ARn, uðtÞAR and yðtÞAR are the
system states, control input and output, respectively. ωðtÞ is an
r-dimensional standard Wiener process defined on a probability
space ðΩ;ϝ;ϝt ; PÞ withΩ being a sample space, ϝ being a s-field, ϝt
being a filtration and P being a probability measure. The drift
terms f i : R

n � R-R and the diffusion terms gi : R
n � R-Rr ,

i¼ 1;…;n, are Borel measurable, continuous in system states and
satisfy f ið0;0Þ ¼ 0 and gið0;0Þ ¼ 0.

In the nonlinear control community, finite-time stabilization is
one of the most fundamental and challenging problems. In
contrast to the commonly used notion of asymptotic stability,
finite-time stability requires essentially that a control system
should be stable in the sense of Lyapunov and its trajectories tend

to zero in finite time. It was demonstrated in [1] that finite-time
stable systems might have not only faster convergence but also
better robustness and disturbance rejection properties. The work
[2] provided a solid foundation for finite-time stability theory of
continuous autonomous systems, which gave a judging criterion
on finite-time stability. Then, some conditions for finite-time
stability have been presented for continuous systems [3] and
non-autonomous continuous systems [4]. In the literature, several
results on finite-time state feedback stabilization have been
achieved in [5–7] and the references therein. However, since
finite-time stabilizers are generally not smooth, their design methods
are sophisticated, especially when some states are not measurable.
Based on a “finite-time separation principle”, global finite-time
stabilization via output feedback can be achieved for the double
integrator system in [8]. The work [9] has developed a novel
systematic design method, namely homogeneous domination
approach, which provides us a new perspective to deal with the
output feedback control problem for nonlinear systems and leads to
several stabilization results [10–12]. By coupling the homogeneous
domination approach and finite-time stabilization technique, an
output feedback controller was constructed to global stabilize a class
of lower-triangular nonlinear systems [13] and upper-triangular ones
[14]. Moreover, with unknown output gain, the problem of global
finite-time stabilization has been addressed in [15,16].

In spite of these developments, the above-mentioned results
cannot be generalized easily to a class of stochastic nonlinear
systems. It is well known that stochastic modeling has come to
play an important role in many branches of science and industry.
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Florchinger extended the concept of control Lyapunov functions
and Sontag's stabilization formula to stochastic setting in [17],
which leads to more stabilization results [18–23] and the refer-
ences therein. However, each of them described the asymptotic
behavior of trajectories for a class of stochastic nonlinear systems
as time tends to infinity. Recently, the work [24] has presented the
concept of finite-time stability in probability for stochastic systems
and has proved the stochastic finite-time stability theorem. Sub-
sequently, for a class of stochastic nonlinear systems in strict-
feedback form, the work [25] designed a continuous state-
feedback controller to guarantee the global finite-time stability
in probability and our recent work [26] solved the finite-time
stabilization problem by dynamic state-feedback. However, only
state feedback was considered, which requires all the system states
to be measurable. Immediately, one may ask the following inter-
esting questions: Is it possible to relax the growth conditions for
nonlinear functions? Under these weaker conditions, how can one
design an output feedback controller to make (1) globally finite-time
stable in probability?

Motivated by the design of finite-time stabilizer in determinis-
tic cases [13,14], and stochastic finite-time stability theorem
proposed in [24], we aim to solve the problem of global finite-
time stabilization for a class of stochastic nonlinear systems via
output feedback. In order to settle this problem, we first design a
homogeneous output feedback controller for the nominal system.
Then, a scaling gain is introduced to the controller to dominate the
perturbing nonlinearities. By appropriately choosing the scaling
gain, the closed-loop system can be rendered globally finite-time
stable in probability. Furthermore, we extend the result to a class
of upper-triangular stochastic nonlinear systems. The main con-
tributions of this paper are as follows:

(i) Compared with deterministic cases [13,14], this paper extends
the global finite-time stabilization results to a class of stochas-
tic nonlinear systems according to stochastic finite-time
stability theorem.

(ii) The uncertain nonlinearities are functions of both measurable
and unmeasurable states. Based on the homogeneous observer
construction, an output feedback controller guarantees the
closed-loop system finite-time stable in probability.

Notations: Rþ denotes the set of all nonnegative real numbers,
and Rn denotes the real n-dimensional space. Rþ

odd≕fqAR :

qZ0 is a ratio of two odd integersg. For a given vector or matrix
X, XT represents its transpose; TrfXg represents its trace when X is
square; J � J denotes the Euclidean norm of a vector X or the
Frobenius norm of a matrix X. Ci denotes the set of all functions
with continuous ith partial derivatives; K denotes the set of all
functions, Rþ-Rþ , which are continuous, strictly increasing and
vanishing at zero; K1 denotes the set of all functions which are of
class K and unbounded; a4b means the minimum of a and b.

2. Preliminary results

In this section, we present some useful definitions and lemmas
which play very important roles in this paper. Consider the
following stochastic nonlinear system:

dxðtÞ ¼ f ðxðtÞÞ dtþgT ðxðtÞÞ dωðtÞ; xð0Þ ¼ x0ARn ð2Þ

where xðtÞARn is the system state and ωðtÞ is an r-dimensional
standard Wiener process defined on a probability space
ðΩ;ϝ;ϝt ; PÞ. The Borel measurable functions f : Rn-Rn and gT :
Rn-Rn�r are continuous in x that satisfy f ð0Þ ¼ 0 and gð0Þ ¼ 0.

Lemma 2.1 (Skorokhod [27]). Suppose that f ðxðtÞÞ and gðxðtÞÞ are
continuous with respect to their variables and satisfy the linear
growth condition:

‖f ðxðtÞÞ‖2þ‖gðxðtÞÞ‖2rKð1þ‖xðtÞ‖2Þ ð3Þ

for K40. Then given any x0 independent ofωðtÞ, (2) has a continuous
solution with probability one.

Definition 2.1 (Khoo et al. [25]). The trivial solution of (2) is said
to be finite-time stable in probability if the solution exists for any
initial value x0ARn, denoted by xðt; x0Þ. Moreover, the following
statements hold:

(i) Finite-time attractiveness in probability: For every initial value
x0ARn\f0g, the first hitting time τx0 ¼ infft; xðt; x0Þ ¼ 0g, which
is called the stochastic settling time, is finite almost surely,
that is, Pfτx0 o1g¼ 1.

(ii) Stability in probability: For every pair of ɛAð0;1Þ and r40,
there exists a δ¼ δðɛ; rÞ40 such that PfJxðt; x0ÞJor; 8 tZ0g
Z1�ɛ, whenever Jx0 Joδ.

(iii) The solution xððtþτx0 Þ; x0Þ is unique for tZ0.

Definition 2.2 (Florchinger [17]). For any given VðxðtÞÞAC2 asso-
ciated with stochastic system (2), the infinitesimal generator L is
defined as LVðxÞ ¼ ð∂V=∂xÞf ðxÞþ1

2 Tr gðxÞð∂2V=∂x2ÞgT ðxÞ� �
, where

1
2 Tr gðxÞð∂2V=∂x2ÞgT ðxÞ� �

is called as the Hessian term of L.

Lemma 2.2 (Khoo et al. [25]). For system (2), if there exist a
Lyapunov function V : Rn-Rþ , K1 class functions μ1 and μ2,
positive real numbers c40 and 0oγo1, such that for all xARn

and tZ0,

μ1ðJxJ ÞrVðxÞrμ2ðJxJ Þ; ð4Þ

LVðxÞr�c � ðVðxÞÞγ ð5Þ

then the trivial solution of (2) is finite-time attractive and stable in
probability.

Definition 2.3 (Kawski [28]). For real numbers ri40, i¼ 1;…;n,
and fixed coordinates ðx1;…; xnÞARn, 8ɛ40.

� the dilation ΔɛðxÞ is defined by ΔɛðxÞ ¼ ðɛr1x1;…; ɛrn xnÞ, 8ɛ40,
with ri being called as the weights of the coordinates. For
simplicity of notation, we define dilation weight Δ¼ ðr1;…; rnÞ.� a function VACðRn;RÞ is said to be homogeneous of degree τ if
there is a real number τZ0 such that 8xARn\f0g, VðΔɛðxÞÞ ¼
ɛτV ðx1;…; xnÞ.� a vector field f ACðRn;RnÞ is said to be homogeneous of degree
τ if there is a real number τZ�min1r irnfrig such that for
i¼ 1;…;n, 8xARn\f0g, f iðΔɛðxÞÞ ¼ ɛτþ ri f iðx1;…; xnÞ.� a homogeneous p-norm is defined as ‖x‖Δ;p ¼ ð∑n

i ¼ 1jxijp=ri Þ1=p,
8xARn, for a constant pZ1. For simplicity, we choose p¼2 and
write ‖x‖Δ for ‖x‖Δ;2.

Lemma 2.3. Suppose c and d are two positive real numbers. Given
any positive number γ40, the following inequality holds:

jxjcjyjdr c
cþd

γjxjcþdþ d
cþd

γ� c
d jyjcþd:

Lemma 2.4. For xAR, yAR, and pZ1, the following inequalities
hold:

jxþyjpr2p�1jxpþypj;
ðjxjþjyjÞ1=pr jxj1=pþjyj1=pr2ðp�1Þ=pðjxjþjyjÞ1=p:
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