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a b s t r a c t

The problem of stability for linear time-varying delay systems under nonlinear perturbation is

discussed, with delay assumed as time-varying. Delay decomposition approach allows information of

the delayed plant states to be fully considered. A less conservative delay-dependent robust stability

condition is derived, using integral inequality approach to express the relationship of Leibniz–Newton

formula terms in the within the framework of linear matrix inequalities (LMIs). Merits of the proposed

results lie in lesser conservatism, which are realized by choosing different Lyapunov matrices in the

decomposed integral intervals and estimating the upper bound of some cross term more exactly.

Numerical examples are given to illustrate the effectiveness and lesser conservatism of the proposed

method.

& 2012 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Delay phenomenon is often encountered in various mechanics,
physics, biology, medicine, economy, and engineering systems,
such as AIDS epidemic, aircraft stabilization, chemical engineer-
ing systems, control of epidemics, distributed networks, inferred
grinding model manual control, microwave oscillator, models of
lasers, neural network, nuclear reactor, population dynamic
model, rolling mill, ship stabilization, and systems with lossless
transmission lines [1–10,13–17,20–24]. Stability analysis of
dynamic systems with time-delay is thus the focus of theoretical
and practical importance, with many researchers recently paying
heed to delay-dependent stability criteria, generally less conser-
vative than delay-independent ones [1,2,4–10,13–16,21–24]. In
practice, systems almost always present uncertainty, since it is
very difficult to obtain an exact mathematical model due to
environmental noise, uncertain or slowly varying parameters,
etc. Considerable efforts have been devoted to stability for time-
delay systems with nonlinear perturbation [2,4–9,12–16,21,22]
and references therein. Fuzzy control methodologies have
emerged in recent years as promising ways to approach nonlinear
control problems. Fuzzy control, in particular, has had an impact
in the control community because of the simple approach it

provides to use heuristic control knowledge for nonlinear control
problem. In very complicated situations, where the plant para-
meters are subject to perturbations or when the dynamics of the
systems are too complex for a mathematical model to describe,
adaptive schemes have to be used online to gather data and
adjust the control parameters automatically [3,11,12,17–20].

To derive a less conservative stability criterion, model trans-
formation was used in [2] and parameterized neutral model
transformation utilized in [14,15]. In [5], employing descriptor
model transformation, delay-dependent robust stability condition
was presented for a class of time-delay systems with nonlinear
perturbation. In [22], using free-weighting matrices to deal with
cross terms involved in the derivative of the Lyapunov–Krasovskii
function, a less conservative delay-dependent stability criterion
was proposed. Subsequent analysis yields convex LMI condition,
non-conservatively solved at boundary conditions. Despite using
slack matrices in delay-dependent analysis, total number of
decision variables involved in the proposed LMI criterion is
less than that of [21], rendering criterion not only less conserva-
tive but also computationally more attractive. Jensen integral
inequality approach was taken in [23,24]. In [9], Liu proposed
integral inequality approach to rate the delay-dependent stability;
a less conservative delay-dependent stability criterion was pro-
vided in [23,24] via delay decomposition approach. On the other
hand, choosing an appropriate Lyapunov–Krasovskii function
and estimating the upper bound of its time derivative is very
important in deriving the stability criteria.
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Motivated by the afore-mentioned analysis, this paper deals
with delay-dependent stability for a class of time-varying delay
systems with nonlinear perturbations. By developing delay decom-
position approach, information of delayed plant states can be taken
into full consideration, new delay-dependent sufficient stability
criteria obtained in terms of linear matrix inequalities. Merits of the
proposed results lie in their less conservatism and are realized by
choosing diverse Lyapunov matrices in decomposed integral inter-
vals and estimating the upper bound of some cross term more
exactly. Proposed stability criteria are formulated in terms of a set
of linear matrix inequalities (LMIs). Finally, two numerical exam-
ples show efficacy of the proposed approach.

2. Main results

This paper considers time-varying delay systems with non-
linear perturbations that can be described by linear differential
difference equations:

_xðtÞ ¼ AxðtÞþBx t�hðtð ÞÞþFf xðtð Þ,tÞþGg x t�hðtð ÞÞ,tÞ t40ð ð1Þ

x tþZ
� �

¼fðZÞ, 8ZA ½�h, 0� ð2Þ

with xðtÞARn as state vector of the system, A,B,F,GARn�n constant
matrices, fðdÞ continuous vector-valued initial function, h(t) a
time-varying delay in the state, h an upper bound on delay h(t).
f xðtð Þ,tÞARn, and g x t�hðtð ÞÞ,tÞARn�

unknown non-linear perturba-
tions with respect to x(t) and x(t�h(t)), respectively, assumed as

f T xðtð Þ,tÞf xðtð Þ,tÞra2xT ðtÞxðtÞ ð3Þ

gT ðx t�hðtð ÞÞ,tÞgðx t�hðtð ÞÞ,tÞrb2xT t�hðtð ÞÞx t�hðtð ÞÞ ð4Þ

where a and b are known positive constants.
We consider two different cases for time-varying delays

Case I. h(t) is a differentiable function, satisfying for all tZ0:

0rhðtÞrh and _hðtÞrhd ð5Þ

Case II. h(t) is not differentiable or upper bound of h(t) derivative
unknown, and h(t) satisfies

0rhðtÞrh ð6Þ

where h and hdare some positive constants.
The following lemma is useful in deriving criteria:

Lemma 1. [9,10] For any positive semi-definite matrices
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XT
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23 X33

2
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3
75Z0 ð7Þ

the following integral inequality holds

�
R t
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_xT
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xT ðtÞ xT t�hðtð ÞÞ _xT
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x t�hðtð ÞÞ

_xðsÞ
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For system (1)–(6) we give stability condition via delay
decomposition approach:

Theorem 1. In Cases I, if 0rh(t)rdh, for given three scalars h, d,
and hd: Then, for any delay h(t) satisfy 0rh(t)rh, _hðtÞrhd, and
0odo1, the system described by (1) with (5) is asymptotically

stable if there exist matrices P¼ PT 40, Qi ¼QT
i 40, Ri ¼ RT

i 40,
ði¼ 1,2,3Þ, and positive semi-definite matrices

X ¼

X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33
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3
75Z0,

Y ¼
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3
75Z0,

Z ¼
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such that

O¼

O11 O12 O13 O14 0 0 O17

OT
12 O22 0 0 O25 0 O27

OT
13 0 O33 0 0 0 O37

OT
14 0 0 O44 0 0 O47

0 OT
25 0 0 O55 O56 0

0 0 0 0 OT
56 O66 0

OT
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o0 ð9Þ

and

R1�X33Z0, R2�Y33Z0, R1þ 1�hdð ÞR3�Z33Z0 ð10Þ

where

O11 ¼ AT PþPAþQ1þQ3þe1a2IþdhZ11þZ13þZT
13,

O12 ¼ PBþdhZ12�Z13þZT
23,

O13 ¼ PF, O14 ¼ PG, O17 ¼ AT
½dhR1þ 1�dð ÞhR2þahR3�,

O22 ¼� 1�hdð ÞQ3þe2b
2IþdhX11þX13þXT

13þdhZ22�Z23�ZT
23,

O25 ¼ dhX12�X13þXT
23, O27 ¼ BT

½dhR1þ 1�dð ÞhR2þahR3�,

O33 ¼�e1I,

O37 ¼ FT
½dhR1þ 1�dð ÞhR2þahR3�, O44 ¼�e2I,

O47 ¼ GT
½dhR1þ 1�dð ÞhR2þahR3�,

O55 ¼ Q2�Q1þdhX22�X23�XT
23þ 1�dð ÞhY11þY13þYT

13,

O56 ¼ 1�dð ÞhY12�Y13þYT
23, O66 ¼�Q2þ 1�dð ÞhY22�Y23�YT

23,

O77 ¼�½dhR1þ 1�dð ÞhR2þahR3�:

Proof. In Case I, a Lyapunov–Krasovskii functional candidate can
be constructed as

VðtÞ ¼ V1ðtÞþV2ðtÞþV3ðtÞ ð11Þ

where

V1ðtÞ ¼ xT ðtÞPxðtÞ

V2ðtÞ ¼
R t

t�dh xT ðsÞQ1xðsÞdsþ
R t�dh

t�h xT ðsÞQ2xðsÞdsþ
R t

t�hðtÞ x
T ðsÞQ3xðsÞds

V3ðtÞ ¼

Z 0

�dh

Z t

tþy
_xT
ðsÞR1 _xðsÞdsdyþ

Z �dh

�h

Z t

tþy
_xT
ðsÞR2 _xðsÞdsdy

þ

Z 0

�hðtÞ

Z t

tþy
_xT
ðsÞR3 _xðsÞdsdy

Time derivative of V(t) for tA[0,N] along the trajectory of
(1) yields

_V ðtÞ ¼ _V 1ðtÞþ _V 2ðtÞþ _V 3ðtÞ ð12Þ

where

_V 1ðtÞ ¼ _x
T
ðtÞPxðtÞþxT ðtÞP _xðtÞ

¼ 2xT ðtÞP½AxðtÞþBx t�hðtð ÞÞþFf xðtð Þ,tÞþGg x t�hðtð ÞÞ,tÞ�ð
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