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a b s t r a c t

In this paper, a chattering free adaptive sliding mode controller (SMC) is proposed for stabilizing a class

of multi-input multi-output (MIMO) systems affected by both matched and mismatched types of

uncertainties. The proposed controller uses a proportional plus integral sliding surface whose gain is

adaptively tuned to prevent overestimation. A vertical take-off and landing (VTOL) aircraft system is

simulated to demonstrate the effectiveness of the proposed control scheme.

& 2013 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Physical systems suffer from performance degradation and
instability due to uncertainties existing in nature which can be
broadly classified into matched and mismatched types. Uncer-
tainties acting on the system through the input channel are called
matched uncertainties, whereas perturbations in the system
parameters are termed as mismatched uncertainties. Classical
control techniques like adaptive control [1], optimal control [2],
sliding mode control [3] and intelligent control methods like
fuzzy logic control [4] have been extensively used in control
systems perturbed by matched uncertainty. Among these meth-
ods, sliding mode control has received wide acceptance owing to
its robustness and simplicity. However, designing sliding mode
controllers for systems perturbed by the mismatched type of
uncertainty still remains a challenge to the research community.
The difficulty lies in the fact that the dynamics of the uncertain
system are affected even after reaching the sliding mode.

Active research is continuing in the control community for
developing sliding mode controllers for multi-variable systems
affected by mismatched type of uncertainty [5–8]. One significant
research finding is that the stability of the system is guaranteed if
the system trajectory is driven to a bounded region [9–11]. Hence
to ensure asymptotic stability, restriction of keeping an upper
bound on uncertainties is imposed in most of the research works.

By designing a sliding mode controller for certain states of the
system which are provided as inputs to a reduced order system can
take care of the mismatched uncertainties. However, limitation of
this method is that uncertainties should lie in the range space of
certain matrix of the nominal system [3]. A fuzzy logic-based
sliding mode controller proposed in [11] was successful in achiev-
ing quadratic stability for systems with mismatched uncertainty.
Even this method could handle mismatched uncertainty of a certain
form only provided its bound was known a priori [12–14]. By
introducing two sets of switching surfaces for the subsystems and
hence reducing the rank of the uncertainty, asymptotic stability
was achieved in [15]. Dynamic output feedback sliding mode
controllers were attempted in [16] and nonlinear integral type
sliding surface was used to deal with mismatched uncertainties in
[17]. All these works required prior knowledge about the upper
bound of the mismatched uncertainty which is in general difficult
to obtain. Hence, a strategy to obtain the upper bound of the system
uncertainty or a method that does not require this knowledge is
needed. The adaptive sliding mode controller proposed in [18–20]
provided a solution to this problem. However, this adaptive method
yielded gains which were overestimated in many cases giving rise
to large control efforts and high chattering [21,22].

Although the sliding mode controller guarantees robustness,
chattering is its main drawback. Chattering is the high frequency
bang-bang type of control action which leads to premature wear
and tear or even breakdown of the system being applied to.
Chattering is caused due to the fast dynamics which are usually
neglected in the ideal model utilizing digital controllers with
a finite sampling rate. This disadvantage of chattering could
be reduced by techniques such as nonlinear gains, dynamic
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extensions or by using more recent strategies such as higher order
sliding mode control. In [23,24] an algorithm has been proposed
based on the block control and quasi-continuous higher order
sliding mode techniques for nonlinear systems subjected to mis-
matched uncertainty. The core idea that drives the higher order
sliding mode control is that it keeps the sliding surface as well as its
higher order derivatives to zero. The higher order sliding mode
controller ensures good tracking performance, robustness and finite
time stabilization of the controlled system. Past few decades
witnessed tremendous improvement in the second-order sliding
mode (SOSM) controller. Twisting and super twisting [25], subopti-
mal [26,27], drift algorithm [28–30] are the existing SOSM control
algorithms. Nonlinear sliding surface is mostly used to design a
second-order sliding mode controller for uncertain systems. Wen
and Cheng [19] proposed an adaptive variable structure controller
for a class of dynamic systems with matched and mismatched
perturbations. The controller proposed by Wen and Cheng [19]
achieved asymptotic stability without having prior knowledge about
the upper bounds of perturbations. However, this control scheme
suffered the drawback of severe chattering in the control input.
Similar kind of problem was cited in [20] too.

The major contributions of this paper are the following:

� An adaptive integral sliding mode controller (SMC) is proposed
for stabilization of a class of MIMO systems affected by both
matched and mismatched uncertainties.
� An adaptive tuning law is designed and by using that law the

mismatched perturbations are rejected during the sliding
mode while ensuring asymptotical stability of the overall
system.
� The adaptive tuning law ensures that there is no gain over-

estimation with respect to the unknown uncertainties.
� The proposed controller eliminates chattering in the control

input and hence is suitable for practical applications.

The design procedure can be divided into two steps. The first
step is to build the sliding surface using an adaptive technique
that eliminates the need of prior knowledge about the upper
bounds of system perturbations except for those at the input. In
the next step, a derivative control law is developed which
contains the discontinuous sign function. The actual control is
obtained by integrating the derivative control and thereby the
control becomes continuous, smooth and chattering free.

The outline of this paper is as follows. Section 2 describes the
system and the problem is formulated. The design procedure for
the proposed adaptive integral sliding mode controller (SMC) is
explained in Section 3. Effectiveness of the proposed controller is
demonstrated in Section 4 by performing simulation studies.
Conclusions are drawn in Section 5.

2. System description and problem formulation

Let us consider the following dynamic system:

_xðtÞ ¼ AxþB½uþxðt,xÞ�þpðt,xÞ ð1Þ

where xARn is the state vector and uARm is the control input.
Moreover, A and B are known matrices with proper dimension and B

has full rank. Furthermore, xðt,xÞ and pðt,xÞ represent the unknown
matched and mismatched uncertainties, respectively. The objective
of the proposed control scheme is to design an adaptive chattering
free sliding mode scheme for a class of MIMO systems with matched
and mismatched perturbations. The design of the sliding mode
controller involves two key steps, viz. (i) designing the sliding surface
and (ii) designing the control input which obeys the reaching law
property that the sliding manifold approaches zero in finite time.

The sliding surface s is designed as

s¼ Sx ð2Þ

where SARmnn is a constant matrix designed by selecting the
eigenvalues suitably (all negative) to make the system stable [31].
By using the coordinate transformation ½zs� ¼Mx, where the
transformation matrix M¼ ½Wg

Bg
�, Eq. (1) can be transformed to

_z ¼WgAWzþWgABsþWgpðt,xÞ

_s ¼ BgAWzþBgABsþuþxðt,xÞþSpðt,xÞ ð3Þ

here S¼ Bg and Wg, Bg satisfy BgB¼ Im, BgW ¼ 0, WgB¼ 0, and
WgW ¼ In�m. The matrix W is chosen in such a way that
J¼WgAW has the desired eigenvalues [32], where J is a sym-
metric matrix. It can be verified that

M�1
¼ ½W B� ð4Þ

and it can be observed that x¼WzþBs.
When the system is in the sliding mode, it satisfies the

conditions s¼ 0 and _s ¼ 0. Then, the perturbation term in Eq.
(3) becomes Wgpðt,xÞ ¼Wgpðt,WzÞ ¼ prðt,zÞ. Now the reduced
order equation becomes

_z ¼ Jzþprðt,zÞ ð5Þ

If the mismatched perturbation prðt,zÞ satisfies Jprðt,zÞJrfrJzJ,
where fr o�lmaxðJÞ, lmaxðJÞ being the maximum eigenvalue of the
J matrix, then by choosing the Lyapunov function V ¼ ð1=2ÞJzJ2, it
can be proved that [19,20]

_V ¼ zT JzþzT prðt,zÞrlmaxðJÞJzJ2
þfrJzJ2

¼ ½lmaxðJÞþfr �V o0 ð6Þ

The above condition means that the system will be asymptotically
stable once the sliding mode is reached. However, it is obvious
from the above discussion that the sliding surface design requires
the bounds of the uncertainties to be known a priori [33] which is
extremely difficult practically. Hence, the need arises for design-
ing the sliding surface in such a way that prior knowledge about
the bounds of the uncertainties is not required.

2.1. The adaptive sliding surface design

Let us consider the sliding surface

s¼ SðtÞx ð7Þ

The sliding coefficient matrix SðtÞARmnn can be designed as [19]

SðtÞ ¼ Bþ þNðtÞWg ð8Þ

where Bþ ¼ ðBT BÞ�1BT ARmnn is the Moore–Penrose pseudo-
inverse [34] of B and NðtÞARmnn is designed using an adaptive
technique to be explained later. Let us consider the transforma-
tion

z

s

� �
¼

Wg

SðtÞ

" #
x¼MðtÞx ð9Þ

Now defining WðtÞ ¼W þ
g �BNðtÞARnnðn�mÞ and W þ

g ¼WT
g

ðWgWT
g Þ
�1ARnnðn�mÞ, it can be verified that

MðtÞ�1
¼ ½WðtÞ B� ð10Þ

From (9) and (10), it can be observed that

x¼WðtÞzþBs ð11Þ

So, Eq. (1) gets transformed to

_z ¼WgAWðtÞzþWgABsþWgpðt,xÞ ð12Þ

_s ¼ SðtÞAWðtÞzþSðtÞABsþuþ _NðtÞzþxðt,xÞþSðtÞpðt,xÞ ð13Þ

When the system is in the sliding mode, it satisfies the conditions
s¼ 0 and _s ¼ 0. Then, the perturbation term in Eq. (12) becomes
Wgpðt,xÞ ¼Wgpðt,WðtÞzÞ ¼ pðt,zÞ and Eq. (12) transforms into a
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