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a b s t r a c t

In this paper, the problem of improved delay-dependent robust stability criteria for recurrent neural

networks (RNNs) with time-varying delays is investigated. Combining the Lyapunov–Krasovskii

functional with linear matrix inequality (LMI) techniques and integral inequality approach (IIA),

delay-dependent robust stability conditions for RNNs with time-varying delay, expressed in terms of

quadratic forms of state and LMI, are derived. The proposed methods contain the least numbers of

computed variables while maintaining the effectiveness of the stability conditions. Both theoretical and

numerical comparisons have been provided to show the effectiveness and efficiency of the present

method. Numerical examples are included to show that the proposed method is effective and can

provide less conservative results.

& 2012 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, neural networks (NNs) have attracted much
attention in research and have found successful applications in
many areas such as pattern recognition, image processing, asso-
ciation, optimization problems [6,16]. One of the important
research topics is the globally asymptotic stability of the neural
network models. However, in the implementation of artificial
NNs, time delays are unavoidable due to the finite switching
speed of amplifiers. It has been shown that the existence of time
delays in recurrent neural networks (RNNs) may lead to oscilla-
tion, divergence or instability. Therefore, the stability of RNNs
with delay has become a topic of great theoretical and practical
importance. Generally, when a neural network is applied to solve
an optimization problem, it needs to have a unique and globally
stable equilibrium point. Thus, it is of great interest to establish
conditions that ensure the global asymptotic stability of a unique
equilibrium point of RNNs with delay [1,2,4,5,7–15,18–23].

So far, the stability criteria of RNNs with time delay are classified
into two categories, i.e., delay independent [1,2,4,14,18,23] and
delay dependent [5,7,8,10–13,15,20,21]. Generally speaking, the
delay-dependent stability criteria are less conservative than
delay-independent when the time-delay is small. Therefore, authors
always consider the delay-dependent type. Some less conservative
stability criteria were proposed in [8] by considering some
useful terms and using the free-weighting matrices method.
The stability criteria for neural networks with time-varying delay

were considered in [10] where the relationship between the
time-varying delay and its lower and upper bound was taken into
account. By constructing a new augmented Lyapunov functional
which contains a triple-integral term, an improved delay-depen-
dent stability criterion is derived in [19]. However, these results
have conservatism to some extent, which exist room for further
improvement.

In this paper, the problem of delay-dependent robust stability
criterion for recurrent neural networks with time-varying delay is
considered. A sufficient condition for the solvability of this
problem, which depends on the size of the time delay, has been
presented by means of the Lyapunov functional and the linear
matrix inequality (LMI) approach. Furthermore, the proposed
condition in this paper is less conservative than previously
established ones and include the least number of variables, which
has been shown by some numerical examples. All results are
derived in the LMI framework and the solutions are obtained by
using LMI toolbox of Matlab. Finally, numerical examples are
given to indicate significant improvements over the existing
results.

2. Problem formulation

Consider the following recurrent neural network with time-
varying delays and parameter uncertainties:

_uðtÞ ¼�ðCþDCðtÞÞuðtÞþðAþDAðtÞÞf ðuðtÞÞ

þðBþDBðtÞÞf ðuðt�hðtÞÞÞþ J, ð1Þ

where uðtÞ ¼ ½u1ðtÞ,. . .,unðtÞ�
T ARn is the state vector with the n

neurons; f ðuðtÞÞ ¼ ½f 1ðu1ðtÞÞ,. . .,f nðunðtÞÞ�
T ARn is called an activation
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function indicating how the jth neuron responses to its input;
C ¼ diagðc1,:::,cnÞ is a diagonal matrix with each ci40 controlling
the rate with which the ith unit will reset its potential to the
resting state in isolation when disconnected from the network and
external inputs; A¼ ðaijÞn�n, and B¼ ðbijÞn�n are the feedback and
the delayed feedback matrix, respectively; J¼ ½J1,. . .,Jn�

T ARn is a
constant input vector, DAðtÞ, DBðtÞ, and DCðtÞ are unknown
matrices that represent the time-varying parameter uncertainties
and h(t) is the time delay of the system satisfies

0rhðtÞrh, _hðtÞrhd, ð2Þ

where h and hd are some positive constants.
In this paper, the neuron activation functions are assumed to

be bounded and satisfy the following assumption.

Assumption 1. It is assumed that each of the activation functions
f jðj¼ 1,2,:::,nÞ possess the following condition

0r
f iðB1Þ�f iðB2Þ

B1�B2
rki, B1aB2AR,i¼ 1,2,:::,n, ð3Þ

where kiði¼ 1,2,:::,nÞ are known constant scalars.
Next, the equilibrium point un ¼ ½un

1,. . .,un
n�

T of system (1) is
shifted to the origin through the transformation xðtÞ ¼ uðtÞ�un,
then system (1) can be equivalently written as the following
system

_xðtÞ ¼�ðCþDCðtÞÞxðtÞþðAþDAðtÞÞgðxðtÞÞþðB

þDBðtÞÞgðxðt�hðtÞÞÞ, ð4Þ

where xðUÞ ¼ ½x1ðUÞ,. . .,xnðUÞ�
T , gðxðUÞÞ ¼ ½g1ðx1ðUÞÞ,. . .,gnðxnðUÞÞ�

T ,
giðxiðUÞÞ ¼ f iðxiðUÞþun

i Þ�f iðu
n

i Þ, i¼ 1,2,:::,n: It is obvious that the
function gjðUÞðj¼ 1,2:::,nÞ satisfies the following condition,

0r
giðxiÞ

xi
rki, gið0Þ ¼ 0, 8xia0, i¼ 1,2,:::,n, ð5Þ

which is equivalent to

giðxiÞðgiðxiÞ�kixiÞr0, gið0Þ ¼ 0, 8xia0, i¼ 1,2,:::,n: ð6Þ

The matrices DCðtÞ, DAðtÞ and DBðtÞ are the uncertainties of
the system and have the form

½DCðtÞ DAðtÞ DBðtÞ� ¼DFðtÞ½Ec Ea Eb�, ð7Þ

where D, Ec , Ea, and Eb are known constant real matrices with
appropriate dimensions and FðtÞ is an unknown matrix function
with Lebesgue-measurable elements bounded by

FT
ðtÞFðtÞr I, 8t, ð8Þ

where I is an appropriately dimensioned identity matrix.
The following lemmas are useful in deriving the criteria. First,

we introduce the following integral inequality approach (IIA),
which be used in the proof of ours.

Lemma 1. [17] For any positive semi-definite matrices

X ¼

X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

2
64

3
75Z0, ð9aÞ

the following integral inequality holds

�
R t

t�hðtÞ
_xT
ðsÞX33 _xðsÞdsr

Z t

t�hðtÞ
xT ðtÞ xT ðt�hðtÞÞ _xT ðsÞ
� � X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 0

2
64

3
75

xðtÞ

xðt�hðtÞÞ

_xðsÞ

2
64

3
75ds:

ð9bÞ

Secondary, the following Schur complement result, which is
essential in the proofs of Theorem 1, is introduced.

Lemma 2. [3]. The following matrix inequality

Q ðxÞ SðxÞ

ST
ðxÞ RðxÞ

" #
o0, ð10aÞ

where Q ðxÞ ¼ QT
ðxÞ, RðxÞ ¼ RT

ðxÞ and SðxÞ depend affine on x, is
equivalent to

RðxÞo0, ð10bÞ

Q ðxÞo0, ð10cÞ

and

Q ðxÞ�SðxÞR�1
ðxÞST
ðxÞo0: ð10dÞ

Finally, the following Lemma 3 will be used to handle the
parametrical perturbation.

Lemma 3. [3]. Given symmetric matrices O and D,E, of appro-
priate dimensions,

OþDFðtÞEþET FT
ðtÞDT o0, ð11aÞ

for all FðtÞ satisfying FT
ðtÞFðtÞr I, if and only if there exists some

e40 such that

OþeDDT
þe�1ET Eo0, ð11bÞ

3. Main results

In this section, we use the integral inequality approach (IIA) to
obtain stability criterion for a recurrent neural network with
time-varying delays. First, we take up the case where
DCðtÞ ¼ 0, DAðtÞ ¼ 0 and DBðtÞ ¼ 0 in system (4) as follows:

_xðtÞ ¼�CxðtÞþAgðxðtÞÞþBgðxðt�hðtÞÞÞ, ð12aÞ

xðtÞ ¼fðtÞ, tA ½�h,0�: ð12bÞ

Based on the Lyapunov–Krasovskii stability theorem and
integral inequality approach (IIA), the following result is obtained.

Theorem 1. For given positive scalars h and hd, the recur-
rent neural network system with time-varying delay (12)
is asymptotically stable if there exist symmetry positive-

definite matrices P¼ PT 40, Q ¼ QT 40, R¼ RT 40, Z ¼ ZT 40,

U ¼UT 40, diagonal matrices SZ0,L1Z0,L2Z0, and X ¼

X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

2
64

3
75Z0, Y ¼

Y11 Y12 Y13

YT
12 Y22 Y23

YT
13 YT

23 Y33

2
64

3
75Z0, such that the

following LMIs hold for

O¼

O11 O12 O13 O14 0 O16

OT
12 O22 O23 0 O25 O26

OT
13 OT

23 O33 0 0 O36

OT
14 0 0 O44 O45 0

0 OT
25 0 OT

45 O55 0

OT
16 OT

26 OT
36 0 0 O66

2
66666666664

3
77777777775
o0, ð13aÞ

and

Z�X33Z0, ð13bÞ

Z�Y33Z0, ð13cÞ

where

K ¼ diag k1,k2,:::,kn,
� �

, O11 ¼�CT PþPCþQþRþhX11þX13þXT
13,

O12 ¼ PA�CT SþKL1, O13 ¼ PBþKL2, O14 ¼ hX12�X13þXT
23,

O16 ¼�hCT Z, O22 ¼UþAT SþSA�2L1, O23 ¼ SB, O26 ¼ hAT Z,
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