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a b s t r a c t

This paper proposes a new method for online identification of a nonlinear system modelled on

Reproducing Kernel Hilbert Space (RKHS). The proposed SVD–KPCA method uses the Singular Value

Decomposition (SVD) technique to update the principal components. Then we use the Reduced Kernel

Principal Component Analysis (RKPCA) to approach the principal components which represent the

observations selected by the KPCA method.

& 2012 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Many kernel methods such as Support Vector Machine (SVM)[14],
Regularization Network (RN) [3], Kernel Principal Component analysis
(KPCA) [2] and Kernel Partial Least Squares (KPLS) [11] have been
proposed in recent years for applications in classification [32],
diagnostic [31] and nonlinear regression problems [16,30]. In their
original forms, most of these methods cannot operate in online way
because of the difficulties accompanying them such as the time and
memory complexities (because of the growing kernel matrix) and the
need to avoid overfitting. Recently a theoretical foundation for online
learning algorithm with kernel method in reproducing kernel Hilbert
spaces was proposed [4,12,13,17,18,20,21]. The online kernel algo-
rithm is more useful when the system to be identified is time-
varying, because these algorithms can automatically track changes of
system model with time-varying and time lagging characteristic.

In this paper we propose a new method for online identifica-
tion of a nonlinear system parameters modelled on Reproducing
Kernel Hilbert Space (RKHS). This method uses the SVD technique
to update the principal components and then the Reduced Kernel
Principal Component Analysis (RKPCA) to select the observations
data to approach the Principal Components Analysis updated by
the SVD method. The selected observations are used to build an
RKHS model with a reduced parameter number. The proposed
online identification method updates the list of the retained

principal components, and then the RKHS model by evaluating
the error between the output model and the process one. The
proposed technique may be very helpful to design an adaptive
control strategy of nonlinear systems.

The paper is organized as follows: in Section 2, we remind the
Reproducing Kernel Hilbert Space (RKHS). Section 3 is devoted to
the modelling in RKHS. The Reduced Kernel Principal Component
Analysis RKPCA method is presented in Section 4. In Section 5, we
propose the new online SVD–KPCA method. The proposed algo-
rithm has been tested to identify a chemical reactor [7] and a
Tennessee Eastman process [25].

2. Reproducing kernel Hilbert space

Let E�Rd an input space and L 2(E) the Hilbert space of square
integrable functions defined on E. Let k : E� E-R be a contin-
uous positive definite kernel. It is proved [5,8] that it exists a
sequence of an orthonormal eigen functions (c1,c2,y,cl) in L 2(E)
and a sequence of corresponding real positive eigenvalues
(s1,s2,y,sl) (where l can be infinite) so that

k x,tð Þ ¼
Xl

j ¼ 1

sjcjðxÞcjðtÞ; x,tAE ð1Þ

Let FkCL 2(E) be a Hilbert space associated to the kernel k and
defined by

Fk ¼ f AL2 Eð Þ=f ¼
Xl
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where ji ¼
ffiffiffiffiffisi
p

ci i¼1,y,l. The scalar product in the space Fk

is given by

/f ,gSFk
¼/

Xl

i ¼ 1

wiji,
Xl

j ¼ 1

zjjjSFk
¼
Xl

i ¼ 1

wizi ð3Þ

The kernel k is said to be a reproducing kernel of the Hilbert
space Fk if and only if the following conditions are satisfied.

8xAE, k x,:ð ÞAFk

8xAE and 8f AFk, /f :ð Þ,k x,:ð ÞSFk
¼ f ðxÞ

(
ð4Þ

Where k(x,.) means k(x,x
0

) 8x
0

AE

Fk is called reproducing kernel Hilbert space (RKHS) with
kernel k and dimension l. Moreover, for any RKHS, there exists
only one positive definite kernel and vice versa [9].

Among the possible reproducing kernels, we mention the
Radial Basis function (RBF) defined as

k x,tð Þ ¼ exp �:x�t:2
=2s2

� �
; 8x,tAE ð5Þ

with s a fixed parameter.

3. RKHS models

Consider a set of observations {x(i),y(i)}i¼1,y,M with x(i)ARn,
y(i)AR are respectively the system input and output. According to
the statistical learning theory (SLT) [14,15] the identification
problem in the RKHS Fk can be formulated as a minimization of
the regularized empirical risk. Thus it consists in finding the
function f*AFk such that

f n ¼
Xl

j ¼ 1

wn

j jj ¼min
f AFk

1

M

XM
i ¼ 1

yðiÞ�f xðiÞ
� �� �2

þl:f:2

Fk
ð6Þ

where M is the measurement number and l is a regularization
parameter chosen in order to ensure a generalization ability to
the solution f*. According to the representer theorem [8], the
solution f* of the optimization problem (6) is a linear combination
of the kernel k applied to the M measurements x(i), i¼1,y,M, as

f nðxÞ ¼
XM
i ¼ 1

an

i k xðiÞ,x
� �

ð7Þ

To solve the optimization problem (6) we can use some kernel
methods such that Support Vector Machine (SVM) [10], Least
Square Support Vector Machine (LSSVM) [6], Regularization Net-
work (RN) [3], Kernel Partial Least Square (KPLS) [11], etc. In [2],
the Kernel Principal Component Analysis KPCA was proposed.
This method reconsiders the regularization idea by finding the
solution to the identification problem in some subspaceFkpca

spanned by the so called principal component analysis.
In the next section we present the Reduced KPCA in which we

approximate the retained principal component given by the KPCA
method by a set of vectors of observations. These vectors point to
the directions of the largest variance with the retained principal
component.

4. RKPCA method

Let a nonlinear system with an input uAR and an output yAR

from which we extract a set of observations {u(i),y(i)}i¼1,y,M. Let Fk

an RKHS space with kernel k. To build the input vector x(i) of the
RKHS model we use the NARX (Nonlinear auto regressive with

eXogeneous input) structure as

xðiÞ ¼ uðiÞ,u i�1ð Þ,. . .,u i�muð Þ,y i�1ð Þ,. . .,y i�myð Þ
n oT

; mu, myAnaturals;

ð8Þ

The set of observations becomes D¼{x(i),y(i)}i¼1,y, M where
xðiÞARmuþmy þ1 and y(i)AR. and the RKHS model of this system
based on (7) can be written as
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Let the application F
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where ji are given in (2).
The Gram matrix K associated to the kernel k is an M-

dimensional square matrix, so that

Ki,j ¼ k xðiÞ,xðjÞ
� �

for i,j¼ 1,. . .,M ð11Þ

The kernel trick [9] is so that

/FðxÞ,F x0ð ÞS¼ k x,x0ð Þ8x,x0AE ð12Þ

We assume that the transformed data F xðiÞ
� �� �

i ¼ 1,...,M
ARl are

centered [2]. The empirical covariance matrix of the transformed
data is symmetrical and l-dimensional. It is written as the
following:

Cf ¼
1

M

XM
i ¼ 1

F xðiÞ
� �

F xðiÞ
� �T

,CfARl�l
ð13Þ

Let l0 the number of the eigenvectors Vj

� �
j ¼ 1,...,l0

of the matrix Cf
that corresponding to the non zeros positive eigenvalues
lj

� �
j ¼ 1,...,l0

. It is proved in [2] that the number l’ is less or equal
to the measurement number M.

Due to the large size l of Cf, the computing of Vj

� �
j ¼ 1,:::,l0

can

be difficult. The KPCA method shows that these Vj

� �
j ¼ 1,:::,l0

are

related to the eigenvectors bj

n o
j ¼ 1,:::,l0

of the gram matrix K

according to [1]

Vj ¼
XM
i ¼ 1

bj,iF xðiÞ
� �

,j¼ 1,. . .,l0 ð14Þ

Where (bj,i)j¼1,y, p are the components of bj

n o
j ¼ 1, ..., l0

associated

to their nonzero eigenvalues m14 . . .4ml0

The principle of the KPCA method consists in organizing the

eigenvectors bj

n o
j ¼ 1, ..., l0

in the decreasing order of their corre-

sponding eigenvalues mj

n o
j ¼ 1, ..., l0

. The principal components are

the p first vectors {Vj}j¼1,y, p associated to the highest eigenva-
lues and are often sufficient to describe the structure of the data
[1,2]. The number P satisfies the Inertia Percentage criterion IPC
given by

Pn
¼ arg IPCZ99ð Þ ð15Þ
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