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a b s t r a c t

This paper investigates the robust stability and stabilization of fractional order linear systems with
positive real uncertainty. Firstly, sufficient conditions for the asymptotical stability of such uncertain
fractional order systems are presented. Secondly, the existence conditions and design methods of the
state feedback controller, static output feedback controller and observer-based controller for asympto-
tically stabilizing such uncertain fractional order systems are derived. The results are obtained in terms
of linear matrix inequalities. Finally, some numerical examples are given to validate the proposed
theoretical results.
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1. Introduction

Fractional order control systems have attracted growing atten-
tion and interest of physicists and engineers from an application
point of view recently (see [1–7, and the references therein]). On
the one hand, this is mainly due to the fact that many real-world
physical systems in interdisciplinary fields can be well characterized
by fractional order differential equations involving the so-called
fractional derivatives and integrals (for an introduction to this
theory, see [1]). In particular, it has been shown that viscoelastic
materials having memory and hereditary effects [8], biomedical
systems [9–11], dynamical processes such as semi-infinite lossy RC
transmission [12], mass diffusion and heat conduction [13] can be
more adequately modeled by fractional order models than the
traditional integer order models. In addition, fractional order
derivatives and integrals also provide a powerful instrument for
modeling dynamical processes in fractal media [14]. This is a
significant advantage of the fractional order models in comparison
with integer order models, where such effects or geometry have
been neglected [14]. On the other hand, with the success in the
synthesis of real noninteger differentiator and the emergence of
new electrical circuit element called “fractance” [15,16], fractional
order controllers [14,17–22] have been designed and applied to

control a variety of dynamical processes, including integer order
and fractional order systems, so as to enhance the robustness and
performance of the control systems.

Stability and stabilization is fundamental to fractional order
control systems [23–26]. In practice, there exist some uncertainties
in the model due, for example, to some uncertain physical para-
meters, parametrical variations in time, neglected dynamics and so
on. These uncertainties, which have to be considered for modeling
and analyzing the system, can be introduced through various forms.
There have been some stability results about the fractional order
systems with interval uncertainties [27–32], polytopic uncertainties
[33,34], or norm-bounded uncertainties [35]. For example, the
robust stability problem of fractional order linear time-invariant
(FO-LTI) interval systems described in the transfer function form
was investigated in [30]. The robust stability problem of FO-LTI
interval systems described in the state-space form was first con-
sidered in [29] by using the matrix perturbation theory. In [28],
based on Lyapunov inequality, a new robust stability checking
method was proposed for FO-LTI interval uncertain systems. How-
ever the results in [28,29] only are sufficient conditions. In [27], the
necessary and sufficient condition for the robust stability of FO-LTI
interval systems with fractional orders α, 1rαo2, was presented.
In [31,32], robust stability and stabilization problems of FO-LTI
interval systems were investigated by using the linear matrix
inequality method. In [36,37], sufficient conditions for the robust
stability and stabilization of a class of FO-LTI interval systems with
linear coupling relationships among the fractional order, the system
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matrix and the input matrix were derived. In [35], observer-based
controller and static output feedback controller for uncertain
fractional order systems with norm-bounded uncertainty via linear
matrix inequality approach were designed. In [38], synchronization
of uncertain chaotic fractional order Duffing–Holmes systems was
achieved by using the sliding mode control. In [39], an adaptive
fuzzy sliding mode control for synchronizing two different uncer-
tain fractional order time-delay chaotic systems was investigated. In
[40], the sliding mode controller for an uncertain chaotic fractional
order economic system was designed.

It is well known that the interval uncertainty description,
polytopic uncertainty description, and norm-bounded uncertainty
description only can capture gain uncertainty [41,42]. When
uncertainty phase information is available, these uncertainty
description may lead to conservative results [41,42]. A way for
accounting phase information is to apply the positivity theorem
and more precisely to model the uncertainty through a positive
real uncertainty matrix as in [41–44]. Note that positive real
uncertainty exists in many real systems, and the robust stability
and stabilization problem of integer order systems with positive
real uncertainty has been studied in [41–44]. To the best of our
knowledge, there are few results concerning robust stability and
stabilization of fractional order linear systems with positive real
uncertainty. Moreover, in most practical applications, the system
state vector is not always accessible and only the partial informa-
tion is available via measured output. In this case, the output
feedback control or observer-based control is often needed.

With the above motivation, the robust stability and stabilization
of fractional order linear systems with positive real uncertainty will
be investigated. Firstly, sufficient conditions for the asymptotical
stability of such uncertain fractional order systems are presented.
Secondly, the existence conditions and design methods of the state
feedback controller, static output feedback controller and observer-
based controller for asymptotically stabilizing such uncertain frac-
tional order systems are derived. The results are obtained in terms
of linear matrix inequalities. Finally, some numerical examples are
given to validate the proposed theoretical results.

The rest of this paper is organized as follows: in Section 2, the
problem formulation and some necessary preliminaries are pre-
sented. In Section 3, robust stability conditions of uncertain
fractional order systems with positive real uncertainty are derived.
In Section 4, robust stabilizable conditions of such uncertain
fractional order systems via state feedback control, static output
feedback control and observer-based output feedback control and
the design methods of the corresponding controllers are derived.
For illustration of the effectiveness of the proposed theoretical
results, numerical examples are presented in Section 5. Finally,
some conclusions are given in Section 6.

Notations: We denote by MT the transpose of M, by M the
conjugate of M, by Mn the transpose conjugate of M, by z the
conjugate of the scalar number z, by ReðzÞ its real part and by ImðzÞ
its imaginary part. In is the identity matrix of order n. Matrices, if
not explicitly stated, are assumed to have appropriate dimensions.
� is the Kronecker product of two matrices and ðA � BÞðC � DÞ ¼
ðACÞ � ðBDÞ. i denotes the imaginary unit. SymfXg denotes the
expression XnþX. The notation � stands for the symmetric com-
ponent in matrix.

2. Problem formulation and preliminaries

Consider the following uncertain fractional order linear system:

dαxðtÞ
dtα

¼ ðAþΔAÞxðtÞþðBþΔBÞuðtÞ;
yðtÞ ¼ CxðtÞ;

8><>: ð1Þ

where α is the fractional commensurate order, xðtÞARn denotes
the state vector, uðtÞARl is the control input, yðtÞARm is the output
vector, AARn�n, BARn�l and CARm�n are constant matrices. ΔA
and ΔB are time-invariant matrices with parametric uncertainties,
and are assumed to be of the form (see for example [42–44])

½ΔA ΔB� ¼MΔðζÞ½N1 N2�; ð2Þ

ΔðζÞ ¼ FðζÞ½Iþ JFðζÞ��1; ð3Þ

SymfJg40; ð4Þ
whereMARn�m0 , N1ARm0�n, N2ARm0�l, and JARm0�m0 are known
real constant matrices. The uncertain matrix FðζÞARm0�m0 satisfies

SymfFðζÞgZ0; ð5Þ
where ζAΩ with Ω being a compact set.

Remark 1. It can be verified that the condition (4) guarantees that
I� JFðζÞ is invertible for all FðζÞ satisfying (5). Therefore, ΔðζÞ in (3)
is well defined [42–44].

In this paper, the following Caputo definition is adopted for
fractional derivatives of order α of function f(t), since the Laplace
transform of the Caputo derivative allows utilization of initial
values of classical integer-order derivatives with clear physical
interpretations [1]:

Dαf ðtÞ ¼ dαf ðtÞ
dtα

¼ 1
Γðα�mÞ

Z t

0

f ðmÞðτÞ
ðt�τÞαþ1�m; ð6Þ

wherem is an integer satisfying m�1oαrm and Γð�Þ is the well-
known Euler Gamma function ΓðzÞ ¼ R1

0 tz�1e� t dt. From a math-
ematical point of view, the fractional order can be any real even
complex number. In engineering applications, α often lies in (0, 2),
and is a real number related to physical parameters. Therefore, this
paper focuses on the robust stability and stabilization problem of
uncertain fractional order systems (1) where α is a real number in
(0, 2).

To proceed, we need the following assumption and lemmas.

Lemma 1 (Matignon [25], Sabatier et al. [45]). Let AARn�n and
0oαo2. Then, a necessary and sufficient condition for the asymp-
totical stability of dαxðtÞ=dtα ¼ AxðtÞ is
argðspecðAÞÞ
�� ��4απ2 ;

where spec(A) is the spectrum of all eigenvalues of A.

Lemma 2 (Farges et al. [33]). Let AARn�n, 0oαo1 and
θ¼ ð1�αÞπ=2. The fractional order system dαxðtÞ=dtα ¼ AxðtÞ is
asymptotically stable if and only if there exists a positive definite
Hermitian matrix X ¼ Xn40, XACn�n such that

ðrXþrX ÞTAT þAðrXþrX Þo0; ð7Þ
where r¼ eθi.

Lemma 3 (Sabatier et al. [45]). Let AARn�n, 1rαo2 and
θ¼ π�απ=2. The fractional order system dαxðtÞ=dtα ¼ AxðtÞ is
asymptotically stable if and only if there exists a positive definite
matrix X ¼ XT 40, XARn�n such that

ðATXþXAÞ sin θ ðXA�ATXÞ cos θ
� ðATXþXAÞ sin θ

" #
o0: ð8Þ

Remark 2. Defining

Θ¼ sin θ � cos θ
cos θ sin θ

" #
; ð9Þ
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