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a b s t r a c t

In this paper, the optimal tracking and regulation performance of discrete-time, multi-input multi-output,
linear time-invariant systems is investigated. The control signal is influenced by the external disturbance, and
the output feedback is subjected to an additive white Gaussian noise (AWGN) corruption. The tracking error
with channel input power constraint and the output regulationwith control energy constraint are adopted as
the measure of tracking and regulation performance respectively, which can be obtained by searching
through all stabilizing two-parameter controllers. Both results demonstrate that the performance is closely
related to locations and directions of the nonminimum phase zeros, unstable poles of the plant and may be
badly degraded by external disturbance and AWGN.

& 2013 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, there has been growing attention devoted to
the study of intrinsic performance limits achievable by feedback
control [1–5]. One of the well-studied problems is optimal track-
ing [6–11]. It is known that in general the minimal tracking error
depends on the nonminimum phase zeros, unstable poles and
time delays in the plant [12]. These results are obtained based on
the conventional assumption that controller and plant commu-
nicate information in an ideal manner.

Lately, increasing interest was devoted to the study of control
systems in which non-ideal data transmission occurs. Significant
research attention has been paid to networked control systems
(NCSs) due to their significant advantages [13,14]. In another
aspect, the discrete systems are widely used in the actual envir-
onment, such as computer control systems and sample control
systems. Actually, NCSs are a typical discrete-time systems [15,16].
In NCSs, due to long distance communication channels, and thus,
issues such as time delay [17], noise [18], quantization [19], packet
dropouts [20] have to be considered. The optimal H2 performance
of networked control system can be found in [21], and the analysis

has been done for the tracking control problems [22–25]. It is
shown in paper [22] that the additive white Gaussian noise
imposes unavoidable limitations on achievable performance in
tracking a Brownian motion random process. It also points out that
two-parameter controller structure can improve the tracking
performance. However, in [22,26], the disturbance rejection has
not been considered in tracking problem, whereas, the disturbance
often appears in the actual control system. An optimality-based
framework for addressing the problem of nonlinear non-quadratic
hybrid control for disturbance rejection is studied in paper [27].

The previous results provide some useful information about
the relationship between the control performance and the
plant characteristics. Nevertheless, it is useful to note that
channel input is often required to satisfy the power constraint,
which may arise either from electronic hardware limitations or
regulatory constraints introduced to minimize interference to
other communication system users. Moreover, the bandwidth
of the plant may constrain the tracking accuracy when its input
energy is finite, and control limitation due to the plant
bandwidth is frequently encountered in practical designs, but
rarely seems to have been characterized analytically. Based on
these considerations, this paper firstly studies the optimal
tracking problems concerning MIMO linear time-invariant
(LTI) feedback control systems with input disturbance and
feedback channel noise, and under channel input power con-
straint. Furthermore, regulation problem under control energy
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constraint is also investigated. Thus, one contribution of this
paper is that new tracking performance index combining with
channel input power constraint and regulation performance
combining with control energy constraint are proposed. Then
two explicit expressions on optimal tracking and regulation
performance are obtained by using some factorization of
transfer function matrix and Youla parameterization of con-
trollers, which is the main difference from [28]. On the other
hands, we quantitatively reveal how the tracking and regula-
tion performance are affected by input disturbance and feed-
back channel noise. Both the above results will be very helpful
for the design of NCSs including optimal controllers and
communication channel.

The remainder of this paper is organized as follows. In Section 2,
we define some notations and introduce the Youla parameterization
of all stabilizing controllers, We then proceed in Section 3 to
formulate and solve the problem of optimal tracking under channel
input power constraint, and optimal regulation under control
energy constraint in Section 4. An illustrative example is given in
Section 5 to show effectiveness of the obtained theoretic results.
Finally, Section 6 draws conclusion.

2. Preliminaries

We begin by summarizing briefly some notations used
throughout this paper. For any complex number z, we denote its
complex conjugate by z . For any vector u, we denote its conjugate
transpose by uH, and its Euclidean norm by JuJ . All the vectors
and matrices involved in the sequel are assumed to have compa-
tible dimensions, and for simplicity their dimensions will be
omitted. Let the open unit disc be denoted by D≔fzAC : jzjo1g,
the closed unit disc by D≔fzAC : jzjr1g, the unit circle by ∂D≔
fzAC : jzj ¼ 1g, and the complement of D by D

c
≔fzAC : jzj41g.

Moreover, let J � J denotes the Euclidean vector norm and J � JF
the Frobenius norm JGJ2F≔trðGHGÞ, tr the trace of the matrix.
Define

L2≔ G : GðzÞ measurable in ∂D; ‖G‖22≔
1
2π

Z π

�π
‖GðejθÞ‖2F dθo1

� �
:

Then, L2 is a Hilbert space with an inner product

〈F;G〉≔
1
2π

Z π

�π
trðFHðejθÞGðejθÞ dθ:

Next, define

H2≔ G : GðzÞ analytic in D
c
; ‖G‖22≔sup

r41

1
2π

Z π

�π
‖GðrejθÞ‖2F dθo1

� �
;

and

H?
2 ≔ G : GðzÞ analytic in D; ‖G‖22≔sup

ro1

1
2π

Z π

�π
‖GðrejθÞ‖2F dθo1

� �
:

It is well known that H2 and H?
2 are subspaces and form an

orthogonal pair of L2. Similarly, define H1 as the space of all
complex valued matrix functions which are bounded and analytic
in Dc, and RH1 the space of all rational matrix functions in H1.

Next we introduce some important factorizations that will be
frequently used. For the rational right-invertible transfer function
matrix P, let its right and left coprime factorizations be given by

P ¼NM�1 ¼ ~M
�1 ~N ; ð1Þ

where N; ~N ; ~M ;MARH1, and satisfy the double Bezout identity

~X � ~Y

� ~N ~M

" #
M Y

N X

� �
¼ I; ð2Þ

for some X; ~X ; ~Y ;YARH1. It is well known that all the stabilising
two parameter compensators K can be characterized by the Youla
parameterization

K≔fK : K ¼ ½K1 K2� ¼ ð ~X�R ~NÞ�1½Q ~Y �R ~M �; Q ;RARH1g: ð3Þ
It is also well known that a nonminimum phase transfer function
matrix could be factorized into a minimum phase part and an all-

pass factor [9]. Denote siAD
c
; i¼ 1;…;Nz as the nonminimum

phase zeros of P(z), which are also the nonminimum phase zeros
of N(z), thus N(z) can be factorized as

NðzÞ ¼ LðzÞNmðzÞ; ð4Þ
where NmðzÞARH1 and

LðzÞ ¼ ∏
Nz

i ¼ 1
LiðzÞ; LiðzÞ ¼

1�si
1�si

z�si
1�siz

ηiη
H
i þUiU

H
i ; ð5Þ

with ηi being an unitary vector Jηi J ¼ 1, which can be sequentially
determined from the zero direction vectors of P, and Ui being

a matrix such that ηiηHi þUiU
H
i ¼ I. Similarly, denote pkAD

c
;

k¼ 1;…;Np as the unstable poles of P(z), then ~MðzÞ can be
factorized as

~MðzÞ ¼ ~MmðzÞ ~BðzÞ;

where ~MmðzÞARH1, and

~BðzÞ ¼ ∏
Np

i ¼ 1

~BkðzÞ; ~BkðzÞ
z�pk
1�pkz

~ωk ~ω
H
k þ ~Wk

~W
H
k ;

where the unitary vector ~ωk can be computed analogously from
the pole direction vectors of P, and ~Wk being a matrix such that

~ωk ~ω
H
k þ ~Wk

~W
H
k ¼ I. If W is a real diagonal matrix, then ~MW can be

factorized as

~MðzÞW ¼MmðzÞBðzÞ;
where MmðzÞARH1, and

BðzÞ ¼ ∏
Np

k ¼ 1
BkðzÞ; BkðzÞ ¼

z�pk
1�pkz

ωkωH
k þWkW

H
k ;

with ωk being an unitary vector

ωk ¼
W �1 ~ωk

JW �1 ~ωk J
;

and Wk is matrix such that ωkωH
k þWkW

H
k ¼ I.

In this paper the reference signal r as shown in Fig. 1 is
stochastic signal, which can often be applied in certain environ-
mental monitoring applications or in business and economic
application, thus the research of stochastic signal is necessary.
Denote

r¼ rðkÞ ¼ ½r1ðkÞ; r2ðkÞ;…; rmðkÞ�T ;
and the disturbance signal

d¼ dðkÞ ¼ ½d1ðkÞ; d2ðkÞ;…; dmðkÞ�T :

r

d

n

Pu
1[K 2 ]K

y

Fig. 1. The two-parameter networked feedback tracking control system.
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