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a b s t r a c t

In this paper, by introducing a combined method of sign function, homogeneous domination and adding
a power integrator, and overcoming several troublesome obstacles in the design and analysis, the
problem of state feedback control for a class of nonlinear high-order feedforward systems with the
nonlinearity's order being relaxed to an interval rather than a fixed point is solved.

& 2013 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

With the development of control problem for nonlinear systems,
e.g., [1–9], in recent years, more attention has been paid on the
stabilization of nonlinear feedforward systems as follows:

_ηiðtÞ ¼ ηpiiþ1ðtÞþ f iðt; ηiþ2ðtÞ;…; ηnþ1ðtÞÞ; i¼ 1;…;n�1;

_ηnðtÞ ¼ vpn ðtÞ; ð1Þ

where ηnþ1ðtÞ ¼ 0, ηðtÞ ¼ ½η1ðtÞ;…; ηnðtÞ�> ARn and vðtÞAR are the
system state and control input, respectively. For i¼ 1;…;n,

piARZ1
odd 9fp=qARþ : p and q are odd integers; pZqg, f i : R

þ�
Rn�i-R is an unknown continuous function with f iðt;0Þ ¼ 0. System
(1) is called as nonlinear high-order system if there exists at least
one pi41.

For pi ¼ 1, there are some fruitful results, see [10–17] and the
references therein. While for piZ1, due to some intrinsic features
of high-order systems, e.g., the Jacobian linearization is neither
controllable nor feedback linearizable, there are very few results
achieved for feedforward system (1). In [18], the low gain homo-
geneous domination method is used to achieve the output feed-
back stabilization for a chain of odd power integrators coupled
with nonlinear high-order functions. In [19,20], a state feedback
controller is designed for nonlinear high-order feedforward sys-
tems with input delay. Zhang et al. [21] investigates the problem of
global strong feedback stabilization for nonlinear high-order
feedforward time-delay systems. The problem of global output

feedback control for a class of nonlinear high-order feedforward
systems with input delay is studied in [22], their assumptions can
be summarized as the form:

j f ið�ÞjrM ∑
nþ1

j ¼ iþ2
j ηjðtÞj li;j ð2Þ

with order li;j ¼ pi…pj�1 being a fixed number. Immediately, a very
interesting problem is asked:

Is it possible to relax the order li;j to be an interval but not a
fixed number? Under the weaker condition, can a stabilizing feed-
back controller be designed?

In this paper, by introducing a combined method of sign
function, homogeneous domination and adding a power integra-
tor, and overcoming several troublesome obstacles in the design
and analysis procedure (see Remarks 1–3), we focus on solving the
above problem.

This paper is organized as follows: Section 2 gives some useful
preliminaries. Sections 3 and 4 provide the design and analysis of
controller respectively, following a simulation example in Section 5.
Section 6 concludes this paper.

2. Mathematical preliminaries

The following notations and lemmas are to be used throughout
the paper.

Notations: Rþ stands for the set of all the nonnegative real
numbers. For any vector x¼ ½x1;…; xn�> ARn, denote xi9

½x1;…; xi�> ARi, i¼ 1;…;n�1, JxJ9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i ¼ 1x
2
i

q
. A sign function
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sgnðxÞ is defined as sgnðxÞ ¼ 1 if x40, sgnðxÞ ¼ 0 if x¼0, and
sgnðxÞ ¼ �1 if xo0. The argument of function (or functional)
f ðxðtÞÞ is denoted by f(x), f ð�Þ, or f.

Lemma 1 (Qian and Lin [23]). For x; yAR, pZ1 is a constant, then
jxþyjpr2p�1jxpþypj, ðjxjþjyjÞ1=pr jxj1=pþjyj1=p. If pARZ1

odd , then
jx�yjpr2p�1jxp�ypj, jx1=p�y1=pjr21�1=pjx�yj1=p.

Lemma 2 (Sun et al. [24]). If p¼ b1=b0ARZ1
odd , b1Zb0Z1, then

jxp�ypjr21�1=b0 jsgnðxÞjxjb1 �sgnðyÞjyjb1 j1=b0 .

Lemma 3 (Mitrinović [25]). For x; yAR, then xyrγjxjpþððpγÞ�q=p=

qÞjyjq, where p41, q41 and 1=pþ1=q¼ 1, γ is any positive
constant.

Lemma 4 (Sun and Liu [26]). For the continuous function
f : ½a;b�-RðarbÞ, if it is monotonically increasing and satisfies
f ðaÞ ¼ 0, then j R ba f ðxÞ dxjr jf ðbÞjjb�aj.

Lemma 5 (Sun et al. [24]). f ðxÞ ¼ sgnðxÞjxja is continuously differ-
entiable and satisfies _f ðxÞ ¼ ajxja�1, where aZ1, xAR.

Lemma 6 (Khalil [4]). Let V : Rn-R be a continuous positive
definite function. Then there exist class K functions γ1 and γ2 defined
on ½0; þ1Þ, such that γ1ðJxJ ÞrVðxÞrγ2ðJxJ Þ for all xARn. More-
over, if V(x) is radially unbounded, then γ1 and γ2 can be chosen to
class K1.

Lemma 7 (Krstić et al. [1]). For the nonautonomous system
_x ¼ f ðx; tÞ, let x¼0 be an equilibrium point of system and V : Rn �
Rþ-Rþ be a continuously differentiable function such that γ1ðJxJ Þ
rVðx; tÞrγ2ðJxJ Þ and ∂V=∂tþð∂V=∂xÞf ðx; tÞr�γ3ðJxJ Þ hold for
any tZ0, xARn, where γ1 and γ2 are class K1 functions, and γ3 is
a class K function on Rþ . Then the equilibrium x¼0 is globally
uniformly asymptotically stable.

3. State feedback controller

3.1. Problem formulation

Throughout this paper, we assume that fi satisfies the following
condition.

Assumption 1. For each i¼ 1;…;n�1, there exist constants
�1=∑n

l ¼ 1p1…pl�1oωr0 and M40 such that

j f ið�ÞjrM ∑
nþ1

j ¼ iþ2
j ηjðtÞj ðri þωÞ=rj ; ð3Þ

where

r1 ¼ 1; riþ1 ¼
riþω

pi
; i¼ 1;…;n: ð4Þ

Remark 1. Obviously, system (1) satisfying Assumption 1 is a
nonlinear feedforward system.

Next, we focus on discussing the significance of Assumption 1.
By �1=∑n

l ¼ 1p1…pl�1oωr0 and (4), it is easy to see that the
order in the growth condition is li;j ¼ ðriþωÞ=rjA ½pi…pj�1; AÞ,
where A¼ pi…pj�1ð∑n

l ¼ 1p1…pl�1�∑i
l ¼ 1p1…pl�1Þ=∑n

l ¼ 1p1…
pl�1�∑j�1

l ¼ 1p1…pl�1. It is obvious that Assumption 1 is much
weaker than that in [18–22] in which li;j ¼ pi…pj�1. Fig. 1 clearly
highlights the significance of Assumption 1.

The purpose of this paper is to design a state feedback
controller for system (1) under Assumption 1 such that the
closed-loop system is globally asymptotically stable.

3.2. Design of state feedback controller

Introduce the following scaling transformation:

xi ¼ Γ�diηi; u¼ Γ�dnþ 1v; i¼ 1;…;n; ð5Þ
where 0oΓo1 is to be designed later, and d1 ¼ 0, di ¼
ðdi�1þ1Þ=pi�1, i¼ 1;…;nþ1. Then system (1) can be rewritten as

_xi ¼ Γxpiiþ1þ ~f i; i¼ 1;…;n�1;
_xn ¼ Γupn ; ð6Þ
where ~f i ¼ Γ�di f i and

j ~f i jrMΓ1þ ν ∑
nþ1

j ¼ iþ2
j xj j ðri þωÞ=rj ;

ν¼ min
i ¼ 1;…;n�1; j ¼ iþ2;…;nþ1

djðriþωÞ
rj

�di�1
� �

¼ min
i ¼ 1;…;n�1;j ¼ iþ2;…;nþ1

ωdjþ
1þpiþpi…pj�2

p1…pj�1

ωdjþ
1

p1…pj�1

�1

8>>><
>>>:

9>>>=
>>>;

40: ð7Þ
For simplicity, in the following deduction, for any aARþ and

xAR, we use ½�� to denote ½x�a9sgnðxÞjxja rather than a bracket.
For system (6), we have the following proposition.

Proposition 1. For system (6), there exist a series of constants β1,…,
βn, a continuous state feedback controller u(t), and a continuously
differentiable, positive definite and radially unbounded Lyapunov
function Vð�Þ, such that

_V r�Γ ∑
n

j ¼ 1
an;jz

2
j þ ∑

n

j ¼ 1

∂V
∂xj

~f j; ð8Þ

where an;1;…; an;n are positive constants, and

zj ¼ ½xj�1=rj �½αj�1�1=rj ;
αj�1 ¼ �β

rj
j�1½zj�1�rj ; j¼ 1;…;n: ð9Þ

Proof. At step 1, we choose the first Lyapunov function V1 ¼
l1
R x1
0 ½s�2� r2p1 ds with l140 being a constant, then _V 1 ¼ Γl1

½x1�2� r2p1 ðxp12 �αp11 ÞþΓl1½x1�2� r2p1αp11 þð∂V1=∂x1Þ~f 1. Choosing β1 ¼
ða1;1=l1Þ1=r2p1 with a1;1 being a positive constant, and using (9),

one has _V 1r�Γa1;1z21þΓl1½z1�2� r2p1 ðxp12 �αp11 Þþð∂V1=∂x1Þ~f 1. □

Step k (k¼2, …, n): At step k�1, suppose that there are positive
constants β1, …, βk�1 and a Lyapunov function Vk�1ðzk�1Þ such
that

_V k�1r�Γ ∑
k�1

j ¼ 1
ak�1;jz

2
j þΓlk�1½zk�1�2� rkþ 1pk ðxpk� 1

k �αpk� 1
k�1 Þ

þ ∑
k�1

j ¼ 1

∂Vk�1

∂xj
~f j; ð10Þ

with ak�1;1, …, ak�1;k�1, lk�1 being some positive constants. Next,
we show that (10) still holds for step k. Choose Vk ¼ Vk�1þ lkWk

with lk40 being a constant, where

Wk ¼
Z xk

αk� 1

½½s�1=rk �½αk�1�1=rk �2� rkþ 1pk ds: ð11Þ

From (4) and �1=∑n
l ¼ 1p1…pl�1oωr0, it is not hard to know

that

rkZ1; 2�rkþ1pkZ1; k¼ 1;…;n; ð12ÞFig. 1. The value range of the order of nonlinearity.
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