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1. Introduction

With the development of control problem for nonlinear systems,
e.g., [1-9], in recent years, more attention has been paid on the
stabilization of nonlinear feedforward systems as follows:

Bi®) =1 O+Fi(E 020, o1 (©), i=1,..,n—1,
An(t) = VPr(t), M

where 5, 1(t)=0, n(t)=[n1(t), ..., (O] T eR" and v(t)eR are the
system state and control input, respectively. For i=1,...,n,
pieRZ) 2{p/qeR* : p and q are odd integers, p>q}, f;:R" x
R™ R is an unknown continuous function with f i(t,0)=0. System
(1) is called as nonlinear high-order system if there exists at least
one p; > 1.

For p; =1, there are some fruitful results, see [10-17] and the
references therein. While for p; > 1, due to some intrinsic features
of high-order systems, e.g., the Jacobian linearization is neither
controllable nor feedback linearizable, there are very few results
achieved for feedforward system (1). In [18], the low gain homo-
geneous domination method is used to achieve the output feed-
back stabilization for a chain of odd power integrators coupled
with nonlinear high-order functions. In [19,20], a state feedback
controller is designed for nonlinear high-order feedforward sys-
tems with input delay. Zhang et al. [21] investigates the problem of
global strong feedback stabilization for nonlinear high-order
feedforward time-delay systems. The problem of global output
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feedback control for a class of nonlinear high-order feedforward
systems with input delay is studied in [22], their assumptions can
be summarized as the form:

n+1
FOIM 'S Il @

j=i+2

with order [;; = p;...p;_; being a fixed number. Immediately, a very
interesting problem is asked:

Is it possible to relax the order [;; to be an interval but not a
fixed number? Under the weaker condition, can a stabilizing feed-
back controller be designed?

In this paper, by introducing a combined method of sign
function, homogeneous domination and adding a power integra-
tor, and overcoming several troublesome obstacles in the design
and analysis procedure (see Remarks 1-3), we focus on solving the
above problem.

This paper is organized as follows: Section 2 gives some useful
preliminaries. Sections 3 and 4 provide the design and analysis of
controller respectively, following a simulation example in Section 5.
Section 6 concludes this paper.

2. Mathematical preliminaries

The following notations and lemmas are to be used throughout
the paper.

Notations: R stands for the set of all the nonnegative real
numbers. For any vector x=[xi,...,X;]' €R", denote X;2

[X1,....x]T eR, i=1,...,n—1, IxIl £,/37 x> A sign function
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sgn(x) is defined as sgnx)=1 if x>0, sgn(x)=0 if x=0, and
sgn(x)= —1 if x<0. The argument of function (or functional)
fx(t)) is denoted by f(x), f(-), or f.

Lemma 1 (Qian and Lin [23]). For x,y e R, p> 1 is a constant, then
X+YIP < 2PN xP 4 yPL, (X[ +1yD'P < X]VP+|yVP. If pe Ry, then
Ix—yP < 2P~ 1P —yP|, |xVP—yl/P| <21 VP —y VP,

Lemma 2 (Sun et al. [24]). If p=by/boe R34, b1 =bo=1, then
xP —yP| < 2!~ 1P sgn(x)|x (Pt — sgn(y)ly ||/

Lemma 3 (Mitrinovi¢ [25]). For x,y € R, then xy < y|x|P +((py) " V?/
Qlyl4, where p>1, q>1 and 1/p+1/q=1, y is any positive
constant.

Lemma 4 (Sun and Liu [26]). For the continuous function
f:[a,b]—>R(a <b), if it is monotonically increasing and satisfies
fl@y=0, then | [ f(x) dx < [f(b)I1b—al

Lemma 5 (Sun et al. [24]). f(x) =sgn(x)|x|* is continuously differ-
entiable and satisfies f(x) = alx|*" ', where a> 1, xeR.

Lemma 6 (Khalil [4]). Let V:R"—R be a continuous positive
definite function. Then there exist class K functions y; and y defined
on [0, +00), such that y,(Ix1) < V(x) <y,(llxll) for all xeR". More-
over, if V(x) is radially unbounded, then y; and y, can be chosen to
class K.

Lemma 7 (Krsti¢ et al. [1]). For the nonautonomous system
x =f(x,t), let x=0 be an equilibrium point of system and V : R" x
R™ - R™ be a continuously differentiable function such that y,(Ix1)
<V(x,t) <yy(lxll) and oV /ot+(dV /ox)f (x,t) < —y3(llxIl) hold for
any t >0, xeR", where y; and y, are class K., functions, and y3 is
a class K function on R*. Then the equilibrium x=0 is globally
uniformly asymptotically stable.

3. State feedback controller
3.1. Problem formulation

Throughout this paper, we assume that f; satisfies the following
condition.

Assumption 1. For each i=1,...,n—1, there exist constants
—1/X]_P1..-P_1 <w <0 and M > 0 such that

n+1
IfiOl <M X nt) T, 3)
j=i+2
where
r=1, ri+1=ri;a’,i=l,...,n. 4)
1

Remark 1. Obviously, system (1) satisfying Assumption 1 is a
nonlinear feedforward system.

Next, we focus on discussing the significance of Assumption 1.
By —1/X/_1p1...Pi-1 <w<0 and (4), it is easy to see that the
order in the growth condition is lj; =(ri+w)/rj€[p;...pj_1, A),
where  A=p;..pj (X[ P1---Pio1— Xj—1P1---Pi=1)/ Zi_ 1P1---
p,,1—Z’,;11p1...p,,1. It is obvious that Assumption 1 is much
weaker than that in [18-22] in which [;; = p;...p;_¢. Fig. 1 clearly
highlights the significance of Assumption 1.

order sy =p;p in [9]-[13] order IﬁeLpiu}nj_l,A) in this paper

—
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Fig. 1. The value range of the order of nonlinearity.

The purpose of this paper is to design a state feedback
controller for system (1) under Assumption 1 such that the
closed-loop system is globally asymptotically stable.

3.2. Design of state feedback controller

Introduce the following scaling transformation:

d i=1,...,n, (5)

=T "%y, u=r-ty,

where 0<I'<1 is to be designed later, and d; =0, d;=
(di_1+1)/p;_1,i=1,...,n+1. Then system (1) can be rewritten as

X=Xl +f, i=1,..n-1,
Xp=TuPr, (6)
where f; = r-4f; and

~ n+1
[fil <Mt 3 x| e,
j=i+2

v= min {M—di—l}

Tj

14+pi+Dp;..-Dj_>
_ min D1---Pj-1

i=1..n—1j=i+2..n+1 1
J wdj+

wodj+
-1

P1---Pj-1
> 0. (7)

For simplicity, in the following deduction, for any ae R* and
X e R, we use [] to denote [x]? £ sgn(x)|x|? rather than a bracket.
For system (6), we have the following proposition.

Proposition 1. For system (6), there exist a series of constants f;, ...,
Bn, @ continuous state feedback controller u(t), and a continuously
differentiable, positive definite and radially unbounded Lyapunov
function V(-), such that

. n > n 0V~
V<-TY¥ ajzi+ X ij, (€)]
j=1 j=10X]
where ap1, ...,an, are positive constants, and
zj =[x —[aj_1]"/",
T .
aj_1=—p 4lz-117, j=1,...n. 9

Proof. At step 1, we choose the first Lyapunov function V=
Iy Y [sP*~"P1 ds with |; >0 being a constant, then V;=rl
PP (G — )+ Th[xa PP e}t +(aV4 fox)f 1. Choosing ;=
(ay1/11)VP1 with a;; being a positive constant, and using (9),
one has Vi < —Ia; 122+ 'Lz 2P (X5 — ')+ (V1 /ox)f . ©
Step k (k=2, ..., n): At step k—1, suppose that there are positive

constants f, ..., fr_; and a Lyapunov function V,_{(Zx_;) such
that

k-1
; 2 2 Pio1_ DPe
Vi < =T ¥ g1z Tl _q[ze 1177 P0q T — o)

j=1
k—]avk 1z
S oo

with ay_11, ..., Gx_1x_1, ly_1 being some positive constants. Next,

we show that (10) still holds for step k. Choose V=V _{+[ W,
with [, > 0 being a constant, where

"
Wim [ st a] /o re o ds. a1
a1
From (4) and —1/Y]_,p;1...pi_1 <w <0, it is not hard to know
that

=1, 2-r.1pe=1, k=1,...n, 12)
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