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Abstract

In this paper we present the analysis of an explicit and matrix free fractional step method for incompressible flows. The presented
method can be employed in either conservation or non-conservation form. The stabilization, convergence and conservation aspects of
the presented method are discussed. A procedure for eliminating the first order error in time introduced by the split is proposed. Some
benchmark steady and unsteady state examples are presented to demonstrate the proposed new aspects of the matrix free scheme.
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1. Introduction

Over the last few years interest in developing accurate schemes for solving large scale incompressible flow problems has
increased due to the emerging interdisciplinary applications such as fluid–structure interaction in biomedical studies. Sev-
eral finite elements based incompressible fluid dynamics algorithms have been developed under the umbrella of stabilized
methods. These methods include streamline upwind Petrov–Galerkin (SUPG), Galerkin least squares (GLS), finite calculus
(FIC) and more recently subgrid scale (SGS) approach [1–6].

Another family of stabilized schemes, which are based upon higher order time stepping approach have been very pop-
ular in aerospace applications. The Taylor Galerkin (TG) and characteristic Galerkin (CG) methods are the two major
methods under this category [1,7–15].

In all the above methods pressure stability becomes essential, when these schemes were employed to solve incompress-
ible flow problems. One of the very popular procedures of dealing with the pressure instability in the incompressible flow
context is fractional step or projection method. Recent works of the authors have been on combining the convection stabil-
ization developed via higher order time stepping with a fractional step method. The resulted method is widely known as the
characteristic based split (CBS) scheme [13–15].

The characteristic based methods have been developed over the last thirty five years and have now been widely employed
to solve both convection–diffusion and Navier–Stokes equations [16–22]. The fractional step methods are not new and have
been the subject of discussion since its introduction by Chorin [23]. However, the difference in this paper is that the method
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employed here is matrix free and fully explicit for steady state problems [24–28]. The popular advantages of an explicit
scheme, such as easy to paralyze codes and smaller memory requirement, are well known.

The basis of the characteristic based spit (CBS) scheme and its applications have been discussed in many of the articles
published in the past [13–15,24–36]. Comparison of the CBS scheme with other schemes is discussed in Refs. [37,38]. Our
objective here is, thus, not to review the CBS scheme in detail but to analyse the matrix free CBS scheme for incompressible
flows. We limit our discussion to laminar flows and also to linear triangular elements.

The explicit fractional step scheme based on an artificial compressibility was introduced in Ref. [24]. The method was
developed by combining a classical fractional step method with the artificial compressibility scheme. The characteristic
based stabilization was adopted to reduce oscillations in convection dominated flows. The pressure stabilization was
achieved by introducing fractional stages into the solution process. In the approximation, the incompressible flow equa-
tions were always used in their conservation form and the deviatoric stresses were used in full. However, such an approx-
imation is more expensive than using simplified incompressible flow equations. Also, the classical fractional step method
used in the development of the original CBS scheme is known to introduce a first order time error in pressure solution if the
pressure is completely removed at the fractional stage from the momentum equations [39–42]. In this paper, we consider
both these issues. However, we give more emphasis to the elimination of the first order time error, when matrix free solu-
tion procedure is employed.

The fractional step methods can be derived from a semi- or fully-discrete form of the Navier–Stokes equations. We do
provide the derivation of the explicit fractional step method using both approaches. However, we mainly use the classical
form of the method derived from semi-discrete equations. The error introduced by the difference in semi- and fully-discrete
form of approximations will be the basis for stabilizing the pressure of the second order fractional step method. A similar
approach is proposed in Ref. [43] for quasi-implicit fractional step methods. For transient flow problems, implementation
of such a stabilization will be achieved via a dual time stepping approach.

The paper is organized into following sections. In Section 2 we summarise the incompressible Navier–Stokes equations
in various forms and their non-dimensional scales. Section 3 describes the matrix free fractional step method in some detail.
All the relevant aspects of the scheme, including eliminating first order time error and dual time stepping are described in
this section. Increasing the pressure stability of the second order scheme is presented in Section 4. Some numerical exam-
ples are presented in Sections 5 and 6. Finally, Section 7 draw some conclusions on the presented analysis.

2. Problem statement

The Navier–Stokes equations in conservation form may be written as
Mass conservation

oq
ot
¼ 1

c2

op
ot
¼ � oU i

oxi
; ð1Þ

where c is the speed of sound and approaches infinity for incompressible flows. Thus, we replace this with a finite artificial
compressible wave speed, b, as

1

b2

op
ot
¼ � oUi

oxi
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to retain the time term in the equation. In the above equation,

Ui ¼ qui; ð3Þ
with q being the density and ui being the velocity components.

Momentum conservation

oUi
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where sij are the deviatoric stress components given by

sij ¼ l
oui

oxj
þ ouj

oxi
� 2
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; ð5Þ

where l is the dynamic viscosity. The problem statement is complete with the following boundary conditions

/i ¼ �/i on C/ and q ¼ �q on Cf ð6Þ
in which

C ¼ C/ [ Cf ; ð7Þ
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