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a b s t r a c t

Stable, integrating and unstable processes, including dead-time, are analyzed in the loop with a known
PI/PID controller. The ultimate gain and frequency of an unknown process Gp(s), and the angle of tangent
to the Nyquist curve Gp(iω) at the ultimate frequency, are determined from the estimated Laplace
transform of the set-point step response of amplitude r0. Gain Gp(0) is determined from the measure-
ments of the control variable and known r0. These estimates define a control relevant model Gm(s),
making possible the use of the previously determined and memorized look-up tables to obtain PID
controller guaranteeing desired maximum sensitivity and desired sensitivity to measurement noise.
Simulation and experimental results, from a laboratory thermal plant, are used to demonstrate the
effectiveness and merits of the proposed method.

& 2013 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The importance of control relevant process dynamics charac-
terization is discussed in detail in an overview paper [1], and
reexamined recently in [2]. One of the basic conclusions from [1,2]
follows the idea from [3], where it is proposed to estimate a high-
order ARX model first and then to perform a model reduction in
the frequency domain, to obtain a reduced-order model used for
controller tuning.

Three problems are related to the adequate control relevant
process dynamics characterization: the model structure, the con-
trol relevant region of frequencies and the dilemma open-loop
versus closed-loop process identification.

Closed-loop system performance/robustness tradeoff strongly
depends on a priory knowledge defined by the structure of the
model used for the PID controller tuning. The two parameter
model, obtained from the Ziegler–Nichols time domain tuning [4],
can be used to tune PID controller for lag-dominated processes
Gp(s) [5]. This model is known at the present time as integrator
plus dead-time (IPDT) model. Its relationship with the Ziegler–
Nichols frequency domain tuning is discussed in detail in [5]. The
second one, used for the controller tuning, is the three parameter
model. It is represented by the first-order plus dead-time (FOPDT)
model, introduced first by Cohen–Coon [6], and by the integrating
first-order plus dead-time (IFOPDT) model. FOPDT model can
be used to approximate balanced and dead-time dominated
processes, while IFOPDT model defines a better approximation of

the lag-dominated processes, than the IPDT model [7]. The four
parameter second-order plus dead-time (SOPDT) model, and other
reduced-order models, used for the PI/PID controller tuning, are
summarized in [8]. Mathematical models are always an approx-
imation of reality. Appearance of a dead-time in a model might be
a consequence of low-order modeling [9,10], for example based on
the FOPDT, IFOPDT or SOPDT models, or might be a consequence of
the real time-delay caused by some physical phenomena [11].

The control relevant region of frequencies is the region around
the ultimate frequency ωu of a process Gp(s). This is confirmed by
the PI/PID controller optimization [12–15], based on the frequency
response of the process Gp(iω), under constraints on the robust-
ness. The frequency ω0, where the sensitivity function has its
maximum, occurs in the region around the ultimate frequency ωu,
as demonstrated in [14]. The importance of the process dynamics
characterization based on the ultimate frequency estimation is
firstly recognized by Ziegler and Nichols [4] and further developed
by Åström and Hägglund [16,17]. The extension of the Ziegler–
Nichols process dynamics characterization proposed in [14], by
introducing an additional parameter in the frequency domain,
improved considerably the possibility of better process modeling
in the wider region of frequencies around the ultimate frequency
ωu of a large class of stable processes, processes with oscillatory
dynamics, integrating processes and unstable processes Gp(s),
including dead-time.

Dilemma open-loop versus closed-loop process identification
in academia is treated mainly as a problem of ensuring the best
statistical accuracy [1,3]. However, in industry, breaking of control
loops in operation is mainly ignored by plant operators. When
some initially tuned controller is in operation, a procedure for fine
tuning can be easily accepted if it can be activated/deactivated
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without breaking control loops in operation [18]. A special attention
should be devoted when estimating parameters of a continuous
model including dead-time. For example, this can be done by
applying the extended polynomial closed-loop identification [9],
or to obtain model parameters, including dead-time, from the
estimated frequency response of the process, obtained from the
closed-loop step response tests [10,11]. However, in these methods,
the dead-time free part of the model transfer function must be
specified, based on some a priory knowledge, and different model
structure is used for stable, integrating and unstable processes.

In this paper, a new insight into the problem of control relevant
process dynamics characterization and an effective solution of this
problem is presented. It is based on a continuous model Gm(s) with
the unified structure for a large class of stable processes, processes
with oscillatory dynamics, integrating processes and unstable
processes Gp(s), including dead-time. Proposed in [14] as an
effective extension of the Ziegler–Nichols process dynamics char-
acterization in the frequency domain, this model is defined by
the quadruplet {ku, ωu, φ, A}. Parameter ku is the ultimate gain and
φ¼ argð∂GpðiωÞ=∂ωÞjω ¼ ωu

is the angle of the tangent to the Nyquist
curve Gp(iω) at the ultimate frequency ωu of a process Gp(s). In this
model an equivalent dead-time τ is defined by τ¼φ/ωu. Two
procedures [15,18] are proposed for estimating the quadruplet
{kuest, ωuest, φest, Aest}. Parameter Aest¼A0 is defined in the
frequency domain by A0 ¼ 2j∂GpðiωÞ=∂ωj�1

ω ¼ ωu
=ku [15]. The new

PLL (phase-locked-loop) estimator [15], further improved in [5],
requires only that the controller in operation is a linear controller,
while the relay SheMa estimator [18] does not require this
preliminary information. Estimation methods [5,15,18] are per-
formed without breaking the loop containing a controller in
operation. The model Gm(s), defined by the quadruplet {kuest, ωuest,
φest, Aest}, approximates the Nyquist curve of a large class of stable
processes, processes with oscillatory dynamics, integrating
and unstable processes Gp(s), including dead-time, in a large
region around ωu, and can be effectively used in PID controller
constrained optimization [5].

However, from the industry viewpoint, disadvantage of estima-
tion methods [5,15,18] can be a longer period of time required for
determining the quadruplet {kuest, ωuest, φest, Aest}. Namely, deter-
mination of φest and Aest by applying PLL and SheMa estimators
requires two additional experiments, as explained in Appendix A.
Besides, and this is of essential importance, the basic definition of
parameter A¼ωukuGp(0)/(1þkuGp(0)) [14] offers the possibility to
classify a large class of stable processes, processes with oscillatory
dynamics, integrating and unstable processes, including dead-
time, in the ρ�φ plane [19], where ρ¼κ/(1þκ), κ¼kuGp(0). Stable
and unstable processes are classified as processes inside and
outside the region 0oρo1, 0oφoπ=

ffiffiffiffiffiffiffiffiffiffi
ρþ1

p
, while the integrat-

ing processes are classified as processes with ρ¼1, 0oφoπ=
ffiffiffi
2

p
,

since Gp(0)¼71.
The possibility to classify stable processes, processes with oscilla-

tory dynamics, integrating, and unstable processes, including dead-
time, in a two parameter plane, is important from the PID controller
tuning viewpoint. The desired performance/robustness tradeoff can
be obtained by applying the previously memorized process indepen-

dent look-up tables in this ρ�φ plane [19]. However, to be effective,
such a possibility must be supported by a fast estimation of the
quadruplet {ku, ωu, φ, Gp(0)}. Then, from the estimated {ku, ωu, φ,
Gp(0)} and the previously memorized look-up tables one obtains
directly the gains and the noise filter time constant of a real parallel
PID controller, as presented in Appendix B, for stable processes and
illustrated by experimental results.

In the present paper a new simple and effective closed-loop
procedure is proposed for estimating quadruplet {ku, ωu, φ, Gp(0)} in
a short time interval, without braking the loop with the controller in
operation. It is assumed that the controller in operation is a known
linear controller. The estimation procedure is defined in Section 2. In
Section 3, a test batch, consisting of stable processes, process with
oscillatory dynamics, integrating and unstable processes, including
dead-time, in the loop with PI and PID controllers, is used to
demonstrate the properties of the proposed estimation method.
Finally, in Section 4, the experimental verification of the proposed
method is presented. The quadruplet {kuest, ωuest, φest, Gpest(0)} is
determined by applying a PI controller to a laboratory thermal process
[20], with noisy measurements, and used for the PID controller tuning
by applying the previously memorized look-up tables in the ρ�φ
plane, presented in Appendix B.

2. Determination of the quadruplet {ku, ωu, φ, Gp(0)} from the
closed-loop system set-point step response

Model Gm(s) of an unknown stable process, process with
oscillatory dynamics, integrating process and unstable process,

Fig. 1. Process Gp(s), with a two-degree-of-freedom controller. The set-point r(t),
controlled variable y(t), control variable u(t), load and output disturbances, d(t) and
n(t), represent variations around their values in the nominal regime.
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Fig. 2. The set-point (dashed), the measured closed-loop response y(mTs) of the
real plant (solid-blue), the data yj (circles-black) and yid(t), defined by (solid-red)
lines for 0rtr400 s, obtained by linear interpolation of yj. For t4400 s the
response is approximated with its value defined by the known set-point r0¼5 and
presented also by solid-red line. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Table 1
Parameters of the controllers used to obtain closed-loop set-point step responses
for processes Gpl(s), l¼1,2,…,7.

Process/controller k ki kd Tf b

Gp1(s)/PI 2.1631 4.7980 0 0 1
Gp2(s)/PI 0.7903 0.0654 0 0 1
Gp3(s)/PI 0.1204 0.0946 0 0 1
Gp4(s)/PID1 0.5620 0.0830 1.0620 0.1770 0
Gp5(s)/PI 0.1010 0.00255 0 0 1
Gp6(s)/PI 1.3273 0.01354 0 0 0.15
Gp7(s)/PI 0.3553 0.0030 0 0 0.25
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