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a b s t r a c t

This paper presents a novel model with radial basis functions (RBFs), which is applied successively for
online stable identification and control of nonlinear discrete-time systems. First, the proposed model is
utilized for direct inverse modeling of the plant to generate the control input where it is assumed that
inverse plant dynamics exist. Second, it is employed for system identification to generate a sliding-mode
control input. Finally, the network is employed to tune PID (proportional + integrative + derivative)
controller parameters automatically. The adaptive learning rate (ALR), which is employed in the gradient
descent (GD) method, provides the global convergence of the modeling errors. Using the Lyapunov
stability approach, the boundedness of the tracking errors and the system parameters are shown both
theoretically and in real time. To show the superiority of the new model with RBFs, its tracking results
are compared with the results of a conventional sigmoidal multi-layer perceptron (MLP) neural network
and the new model with sigmoid activation functions. To see the real-time capability of the new model,
the proposed network is employed for online identification and control of a cascaded parallel two-tank
liquid-level system. Even though there exist large disturbances, the proposed model with RBFs generates
a suitable control input to track the reference signal better than other methods in both simulations and
real time.

© 2010 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

To identify and control nonlinear systems accurately, there is
need to employ fine artificial models [1]. The most commonly
applied methods are neural networks (NNs) and fuzzy logic
systems (FLSs). The known supports of these methods are their
ability to learn and good performance for the approximation of
the nonlinear functions. Feedforward NNs and FLSs perform highly
nonlinear static mapping. However, for linear or mildly nonlinear
systems, these models are not well suited, and they cause less
accurate results of identification [2]. To extract the dynamics, we
need to use models that combine linear and nonlinear models. In
the development of NNs, numerous new static and dynamic types
of NN, local and global recurrences, and other mixed structures
have been developed to get better identification results [3]. To
capture the change in operating conditions and noise disturbances
are also important tasks of the identification. Therefore, to work
online is actually a challenging problem for strongly nonlinear
systems. In this work, online identification is aimed for, so that
there is no explicit learning phase needed; i.e. the network is
utilized for a learning-while-functioning task, instead of learning
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then functioning [4]. In system identification, some nonlinearity is
not modeled exactly by feedforward networks. These unmodeled
dynamics of nonlinear systems cause parameter drifts and even
instability. To guarantee stability of identification and even fine
parameter convergence, the optimization of parameters must be
modified. Thus, the Lyapunov stability guaranteed learning rate
is employed in the online gradient descent algorithm. This time-
varying adaptive learning rate (ALR) is determined with current
sensitivity of the plant input–output data and model structure. In
all simulations, the identification is performed in a stable sense
by assuming that the identified system is originally stable. This
optimization provides parametric stability of the network. This
means that the parameters do not increase or decrease abruptly to
meaningless values. It is performed by using the internal dynamics
of the gradient descent (GD) method. If the structure of the
network is available for Lyapunov synthesis, we can show the exact
stability behavior of the models. Some discrete and continuous NN
stability analyses are represented in [3]. In this proposed model,
bounded-input bounded-output (BIBO) stability will be shown
by using the ALR in the Lyapunov stability analysis to result in
boundedness ofmodeling parameters and errors. In addition to the
modeling parameters, the PID controller parameters are updated
with this ALR.
This paper is organized as follows. In Section 2, general RBF

networks, the proposed RBF network and stability analysis are
explained. In Section 3, inverse modeling control by the proposed
network is given with simulations. In Section 4, the sliding-
mode control approach with proposed network identification
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simulations is shown. In Section 5, the PID control parameters
are tuned adaptively by the RBF network to control a nonlinear
system. Finally, in Section 6, the proposedmodel is applied to real-
time control of the cascaded parallel two-tank liquid-level control
system. The corresponding theorems are proved in the Appendix.

2. Radial basis function networks

Radial basis function networks (RBFNs) are one of the different
functionalized type of NNs with high approximation and regular-
ization capability. RBFs are preferred as the basic structure of neu-
ral networks because of their good local specialization and global
generalization ability [5]. The design of an RBFN in its most ba-
sic form consists of three separate layers. The first layer is the
input layer. The second layer is the hidden layer and it is struc-
tured with high dimension to provide better approximation. The
last layer gives the output of the network. The general RBFNmodel
has a nonlinear transformation between the input layer and the
hidden layer, but a linear transformation from the hidden layer to
the output layer. Some basis functions are utilized as RBFs, such
as Gaussian RBFs, multi-quadratic RBFs, inverse multi-quadratic
RBFs, thin-plate spline RBFs, cubic spline RBFs, and linear spline
RBFs. However, Gaussian RBFs are employed frequently in net-
works, since they are bounded, strictly positive and continuous on
<
n [3]. Moreover, they are known to have noise suppression prop-
erties [6]. Therefore, in this study, Gaussian RBFs are structured in
the proposed model.

Ri(x) = exp
(
−
‖x− ci‖2

2σ 2i

)
(1)

where x is the input vector, ci is the center andσi is the standard de-
viation of the Gaussian function, respectively. The optimization of
the centers and standard deviation provides better approximation
and interpolation capability as compared to the sigmoid functions,
which will be seen later in the simulations. In this study, as stated
above, the GD method is employed with ALR to train the parame-
ters in online sense.

2.1. Proposed RBF network

The RBF network introduced has one hidden layer neural
network (NN) with all its parameters being adaptable. The
network parameters are optimized by the gradient descent (GD)
method with ALR whose stable convergence behavior is proved by
Lyapunov stability analysis. The simplified modeling scheme with
two inputs and one output model is represented in Fig. 1. After the
realization of the construction, the network can be designed with
different numbers of inputs and outputs. The idea of construction
of this RBFN is to combine the power of the models, which have
different mapping abilities. These models are the auto-regressive
with exogenous input (ARX) model, the nonlinear static NNmodel
and the nonlinear dynamic NN model. Therefore, the proposed
RBFN is constructed in two parts. The first part is the linear ARX
modeling part. There exist past values of inputs and outputs.
The second part is the nonlinear static NN part and the locally
recurrent dynamic NN part, which are excited with the same ARX
terms. In Fig. 1, the ARX inputs are given as uk−1, yk−1 and yk−2.
However, the uk−1 and yk−1 inputs are used to excite the static
and dynamic parts of the model. These are known NN models;
however, they have not been introduced together previously.
Using a suitable optimization, the network is seen as a well-
defined alternative model for the identification. The dynamic NN
part is called a ‘‘Block-Diagonal Neural Network’’ in [7]. The ARX
modeling part itself is not adequate model to identify nonlinear
systems online well. However, the proposed mixed structure has

fine approximation capability. The general output formula of the
network is given by

ŷ(k+ 1) =
nd∑
i=1

αiu(k− i)+
np∑
j=1

βjy(k− j)

+

nk∑
k=1

γkf
(
‖x1k − ck‖

2

2σ 2k

)
+

nr∑
l=1

ξjf
(
‖x2l − cl‖

2

2σ 2l

)
(2)

where nd and np are selected delays of the inputs and outputs. In
addition, nk and nr are the numbers of RBFs used for the static
and dynamic parts of the network, respectively. The output of the
network is implicitly found as

ŷ(k+ 1) = W T (k)φ(k) (3)
where αi, βj, γk and ξl are the parameters of the vectorW T (k) and
φ(k) is the input vector. The RBF inputs for the static part, which is
superscripted as 1, are as follows:

x11 = w
1
1,1uk−i + w

1
2,1yk−j

x12 = w
1
1,2uk−i + w

1
2,2yk−j

(4)

for dynamic part, which is superscripted as 2, they are

x21 = w
2
1,1uk−i + ŷ

2
1(k− 1)+ ŷ

2
2(k− 1)

x22 = w
2
1,2uk−i + ŷ

2
1(k− 1)+ ŷ

2
2(k− 1)

(5)

where subscripts 1 and 2 show the first and second RBF of the
blocks. The weights; i.e., w11,2 is the weight from input 1 to the
second RBF of block 1.

2.2. Stability analysis

The stability of the modeling is as important as the controller
stability. To extract the nonlinear dynamics of the system with
well-optimized parameters in a stable sense is necessary for
modeling and identification. Identification stability is first related
to the optimization method convergence to a local or global
minimum. The convergence does not take into consideration the
parameters’ magnitude or other characteristics. Therefore, while
training the NNs and FLSs, the convergence of the error to the
minimum does not show the stability of the system unless one
is using some other stability conditions. Therefore, there has to
be a law for stability in optimizing the parameters. This law is
derived by using the Lyapunov stability, input-to-state stability
(ISS), bounded-input bounded-output stability (BIBO), a passivity
approach, etc. Previously, constant stability guaranteed learning
rates have been used in backpropagation algorithms. Nevertheless,
these learning rates are chosen heuristically, but they do not
provide the good convergence in the algorithm. However, if it
is determined by online current knowledge of the inputs and
system structure, the change in model parameters depends on the
current change in the dynamics of the network. The general GD
optimization [4,6] of parameters is given by

W (k+ 1) = W (k)− η(k)
∂E(k)
∂W (k)

(6)

where W (k) and η(k) are current parameters vector and time-
varying learning rate, respectively and E(k) is the identification
cost function. In this work, the following ALR in Theorem 1 is used
in the gradient descent algorithm.

Theorem 1. If the adaptive learning rate of the GD learning (6) is
chosen as

η(k) =
µ

1+ φ(k)Tφ(k)
(0 < µ ≤ 1), (7)

then the global convergence of identification error and parameters is
guaranteed, whereφ(k) is the Jacobian of the output ŷ(k)with respect
to parameters vector W (k).
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