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set fall beyond the practically recognizable precision range. The issue is more problematic when « is
smaller and measurements are noisy.

© 2009 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Fractional calculus is a mathematical topic with a more than
300 year old history. There are multiple viewpoints of the
fractional order system applications studied in the literature,
such as stability analysis [1,2], system identification [3,4], system
approximation [5], control [6,7], synchronization [8,9], dynamical
behavior analysis [10-13], and so on.

System identification is an important part of control engi-
neering and can be performed either in the time or frequency
domain [14]. The first work in a deterministic approach of the fre-
quency domain identification was reported in [15], where the ex-
isting nonlinear least squares problem is replaced by a linear least
squares one by multiplying the equation error with the denomina-
tor of the transfer function. The authors in [ 16] overcame the lack
of sensitivity to low frequency errors of the linear least squares
estimator by an iterative procedure. In [17] and [18], the authors
have solved the existing nonlinear least squares problem using
the Newton-Gauss iteration scheme for a continuous and discrete
time model, respectively. The identification of fractional models in
a way rather close to [15] i.e. restricted to an all poles commensu-
rate transfer functions, has been performed in [4]. A similar method
for an all poles complex commensurate order system has been re-
ported in [19]. The proposed technique was improved and gener-
alized in [20] to include transfer functions with both zero(s) and
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pole(s). Some of the frequency domain identification methods for
integer order models were extended to fractional ones in [21].

Identifiability can be considered both for structure and
parameters of model set components. Studies on the structural
identifiability of a model set can be traced for example in [22-29]
and parameter identifiability for model set components has been
discussed in references such as [27,30-32]. All these references
deal with integer order systems. The problem of identifiability in
fractional order models has not been noticed so far and to our best
knowledge this paper is the first reported work on the general
aspect of this subject.

From results reported in [20] it is revealed that the identifia-
bility is lost for smaller commensurate order «. In other words,
different members of a model set, including the actual system, gen-
erate almost the same output frequency content for an input sig-
nal having extensive frequency content even in a wide frequency
range, while they have completely different order combination and
also different parameters. The number of different models with the
same characteristics increases rapidly with a decrease in the value
of a.

The remainder of the paper is organized as follows. In Section 2
a brief discussion on the frequency domain identification based
on order distribution is provided. Effects of the commensurate
order « in the identifiability are discussed in Section 3. Illustrative
examples in this regard are given in Section 4 to shed light on the
problem appearing to worsen with a decrease in . In Section 5
some remarks on how to choose an acceptable model from the
large number of estimated ones are presented. Some comments on
the identifiability of the model structure and model parameters are
given in Section 6. Finally the paper is concluded in Section 7.
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Fig. 1. Order distribution of the numerator m(q).
2. Frequency domain identification using order distribution

Allowing a restriction on the maximum possible numerator and
denominator orders, a general system representation becomes
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where qmy is the lower limit of the numerator and qm,,, qny are
the upper limits on the differential orders. Notice that the constant
coefficient of the denominator polynomial is 1.

m(q)and n(q) are the order distribution of the numerator and
denominator respectively (as shown in Fig. 1 for m(q)). In the
discrete case, the order distribution contains Dirac-delta functions
at distinct orders of m(q) or n(q).

Now we choose L frequency samples w; (s = jw) which are
linearly spaced in [@wmin, @Wmax]. Assume that the measurements
have been obtained from the following system representation

Y(jw) = G(jo)U (o) + E(jw), (2)

where diagonal matrices U (jw), Y (jw), and E (jw) are input, output,
and noise respectively and are defined as U (jw) = diag([U (jw1),
oL U(op))), Y(jow) = diag(lY (jw1), ..., Y({wy))), G(jw) = diag
([G(w1), ..., G(jwr)]), and E(jw) = diag([e(jw1), ..., e(wr)]).
Let us define
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where q, b, ¢, d, f and g are, respectively, 1 x 1,1 x N,N x 1, N x N,
(M + 1) x N,and (M + 1) x 1 matrices.

To determine the unknown coefficients n and m, the following
weighted quadratic function of the estimation error in (2) is
considered.

]2 (YWyn' — UWum)? (YW, — UW,um) = 0" WHEPEW,n'. (4)

_ This choice reduces nonlinear programming appearing when
J(& EFE) is selected to standard quadratic programming. By
applying the least squares technique on minimizing J, one obtains

n = {Re(d) — Re(f") [Re(S)] " Re()} "
x {Re(/") [Re(S)]™" Re(g) — Re(c)} (5)
m = [Re(S)]”" [Re(f)n + Re(g)].

One may use pseudo inverse algorithms for matrix inversions
in (5) to eliminate the possible ill conditioning.
Let define sets gn and gm as follows

, My} (6)

and consider sets Q, and Q,; such that gn € Q, and gm C Qy,
i.e. the model set contains the system. To estimate the correct
values of m and n, one may generate all subsets of Q,;, and Q, and
then using (5) for each combination, find values of m and n that
minimize the cost function J.

qn = {0,qnq, ..., qny}, gm = {qmg, qmy, . ..

3. Effect of the commensurate order « on the model estimation

At first we build up some mathematical background for our later
use.

Theorem 1. A fractional order system with the commensurate order
« is assumed as F(s) = G(s*). The frequency response F(jw) =
G((jw)*) could be written as G(a + jb) where a = w® cos(0.5a)
and b = w® sin(0.5a7).

Proof. Let us define (jw)* = a + jb. Then replace (jw)* by j*w® =
/%597 (5@ which is equivalent to w® cos(0.5a7) + jo sin(0.5a7).
By equating the real and complex parts of both sides of the first
equation the proof of the theorem is completed. O

Corollary 1.A. The locus of the points ass = a-+jb, which is related to
a fractional system with the commensurate order «, is the line passing
through the origin with slope tan(0.5a).

Corollary 1.B. As a physical meaning, G(a + jb) is the frequency
response of a fractional system with the commensurate order « at
frequency w, that is F(jo) = G((jw)*) where o« = 2 tan~" (£) and

w = (a® + b?) 2.

Corollary 1.C. For a = 0, the fractional order system would be an
integer order one defined by G(jw) where w = b.

Theorem 2. Assume Q (s) has the following bounds over the line s =
(cot(0.5am) +j)bfor by < b < by
A; <1Q()| <Ay and Py < Arg[Q(s)] < Pa. (7)

To have the frequency response of P(s) = Q(s%) in the same range
ie.
A < [P(jw)| <Ay and Py < Arg[P(jw)] < Py, (8)

w should be limited to

(o) cos (o) @
sin(0.5a) sin(0.5a)

Proof. According to Theorem 1, b = w* sin(0.5a7) holds. There-
fore inequality (9) is an obvious consequence of by < b < b,. O
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