
ISA Transactions 50 (2011) 262–267

Contents lists available at ScienceDirect

ISA Transactions

journal homepage: www.elsevier.com/locate/isatrans

Synchronization of chaotic systems with known and unknown parameters using
a modified active sliding mode control
Meisam Yahyazadeh, Abolfazl Ranjbar Noei ∗, Reza Ghaderi
Intelligent System Research Group, Faculty of Electrical and Computer Engineering, Babol (Noushirvani) University of Technology, Babol, P.O. Box 47135-484, Iran

a r t i c l e i n f o

Article history:
Received 3 April 2010
Received in revised form
30 August 2010
Accepted 20 October 2010
Available online 4 December 2010

Keywords:
Active sliding mode control
Synchronization
Chaotic system
Lorenz system
Chen system

a b s t r a c t

This paper defines a new surface in an active sliding mode to synchronize two chaotic systems with
parametric uncertainty. To verify the capability of the proposed scheme, signals are also contaminated
by measurement noise. The integral acting surface produces a dynamics for error, where the appropriate
eigenvalues are easily assigned. Using this surface, calculation of parameters of the controller becomes
simpler than the classical alternative. A sufficient condition, as a guideline of the designated procedure,
is dedicated to provide a robust stability of the error dynamics. Finally, a simulation study is performed
to verify the robustness and effectiveness of the proposed control strategy.
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1. Introduction

In recent years, the chaos theory and relevant properties have
found useful applications inmany engineering areas such as secure
communication, biological systems, power electronic devices and
power quality, digital communication, chemical reaction analysis,
. . . [1–11]. In 1990 Pecora and Caroll [1] introduced a method for
synchronizing two identical chaotic systems with different initial
conditions. They reported that chaotic systems possess a self-
synchronization property.

A typical configuration of chaotic synchronization consists of
drive and response systems. A drive system propels the response
system via a coupling signal to achieve the synchronization
of coupled chaotic systems. A variety of alternative schemes
have been proposed in the literature to ensure control and
synchronization of such systems. Their potentialwas used to create
secure communication systems [10].

The design procedure of an active sliding mode controller
is a combination of an active controller and a sliding mode
one. During some active sliding mode design procedures, there
are some parameters of the controller which are needed to
be determined. However, determination of the parameters is a
somewhat exhaustive task. In this paper, a new surface designation
will be introduced to cope with this problem.
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This paper is organized as follows. In Section 2, an active
sliding mode control is introduced. In Section 3, the theory of the
active sliding mode and the proof of the stability of the controller
with uncertain models and noisy perturbed states are presented.
Numerical simulations are given in Section 4 to illustrate the
effectiveness of the proposed method. Finally, a conclusion in
Section 5 closes the work.

2. System description and the problem formulation

Let us define the following two3-dimensional uncertain chaotic
systems as master and slave, respectively by:

ẋ = (A1 + 1A1)x + g1(x) + 1g1(x) (1)
ẏ = (A2 + 1A2)y + g2(y) + 1g2(y) + u(t) (2)

where x(t) ∈ R3 and y(t) ∈ R3 denote state vectors of the
system. A1 and A2 ∈ R3×3 represent the linear parts of the system
dynamic, and g1 : R3

→ R3 and g2 : R3
→ R3 are the nonlinear

parts of the system. 1A1 ∈ R3×3 and 1A2 ∈ R3×3 are unknown
linear parts of matrices. 1g1 : R3

→ R3 and 1g2 : R3
→ R3

are unknown nonlinear parts of the master and slave systems
respectively. To synchronize the state y(t), with the state of the
master system x(t), the controller u(t) ∈ R3 has been added to
the slave system. The synchronization problem is to design the
controller u(t)which synchronizes the states of the slavewith that
of the master. However, the synchronization goal is as follows:

lim
t→∞

‖x(t) − y(t)‖ → 0 (3)

where ‖.‖ is the Euclidean norm (2-norm) of the vector.
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3. Methodology of active sliding mode control design

3.1. Sliding surface

Let the synchronization error be defined as e = y − x. Using
systems (1) and (2) immediately gives the synchronization error
as:
ė = A2y + 1A2y + g2(y) + 1g2(y) − A1x − 1A1x − g1(x)

− 1g1(x) + u(t). (4)
The sliding surface can be chosen as:

s(e) = e − (K + A2)

∫ t

0
edt (5)

where K is a constant gain matrix.

3.2. Active sliding mode controller design

According to active control design strategy [10–18], control
input u(t) can be used as follows:
u(t) = H(t) − g2(y) + g1(x) − (A2 − A1)x (6)
in which H(t) is designed based on a sliding mode control law.
Although, there are many possible choices for the control H(t),
without loss of generality, the sliding mode control law is chosen
by:
H(t) = Kw(t). (7)
Here w(t) ∈ R is a control input and can be determined as:

w(t) =


w+(t) s(e) ≥ 0
w−(t) s(e) < 0 (8)

where s = s(e) is a switching surface which introduces the desired
dynamics. Replacing u(t) in Eq. (4), into Eq. (6), the error dynamic
is yielded as:
ė = Kw(t) + A2e + M(x, y) (9)
in which M(x, y) represents the uncertain part of the dynamic
which is given by:
M(x, y) = 1A2y + 1g2(y) − 1A1x + 1g1(y). (10)

In this part, let us assume M = 0 where in the next section, it
will be extended for M ≠ 0. An equivalent control approach will
be found by ṡ(e) = 0. A necessary condition for the state trajectory
to stay on the switching surface is as:
s(e) = 0 (11)
together with:
ṡ(e) = 0. (12)
Now, using (5) alters Eq. (9) to:
ṡ(e) = ė − (K + A2)e = K(w − e) = 0. (13)
Solving (13) for w(t) gives the equivalent control weq(t) which is
as follows:
weq = e. (14)
Replacing (14) in (9), the error dynamic of the sliding mode will be
given as:
ė = (K + A2)e. (15)
K is tuned such that all eigenvalues of K + A2 have negative real
parts, hence the system is asymptotically stable. A constant plus
proportional rate reaching law is of concern here [10]. Then, the
reaching phase law can be chosen such that:
ṡ = −qsgn(s) − rs (16)
in which, sgn(s) stands for the signum function. Gains r > 0 and
q > 0 are determined such that the sliding condition ismet and the
slidingmodemotion occurred. From (13) and (16) and replacing for
s from (5), one can obtain:

w(t) = K−1(−qsgn(s) − rs + Ke). (17)

3.3. Robust stability analysis

In order to verify the stability of the above controlled system,
the following Lyapunov function is candidate:

V =
1
2
s2 (18)

where the time derivative of (18) is given by:

V̇ = sṡ = −qssgn(s) − rs2. (19)

Since s sgn(s) > 0, r > 0 and q > 0 immediately gives V̇ <
0, therefore V̇ is negative definite. Consequently, the switching
surface s is bounded and the surface s asymptotically converges to
zero. Substituting (17) in (9), we obtain the error dynamics as:

ė = (A2 + K)e − qsgn(s) − rs. (20)

As a linear system with bounded input, the error system is
asymptotically stable if and only if (A2 + K) has negative
eigenvalues. Since s is asymptotically stable the error dynamics are
also asymptotically stable i.e. limt→∞ ‖e(t)‖ → 0.

• The principle:

With respect to the error dynamic (15), the sliding surface is
developed to be defined as follows:

s(e) = e + P
∫ t

0
edt

where P denotes a matrix gain as P ∈ R3×3. The primary goal is to
obtainmatrix P to satisfy the error dynamics in (15). Differentiating
the surface s(e) with respect to the error in (9), yields:

Kweq + A2e + Pe = 0. (21)

Given (14) and replacing it into (21), P will become:

P = −(K + A2).

Therefore the sliding surface (5) is derived.

3.4. Stability analysis of uncertain chaotic systems

In this part, the stability is analyzed for combination of master
and slave systems. This will be performed when two different
linear and nonlinear uncertain parts (M(x, y) ≠ 0) are included.
Replacing (17) in (9) makes the error dynamic:

ė = (K + A2)e − qsgn(s) − rs + M(x, y). (22)

If unknownnonlinear parts1g1(x) and1g2(x) are Lipschitz,1 then:

|M(x, y)| ≤ N|e| + B|x| (23)

where:

N = (‖1A2‖ + L2) and B = (‖1A2 − 1A1‖ + L2 + L1) . (24)

In order to design a robust controller, the Lipschitz1 condition
must be satisfied which needs uncertainties (and of course B and
N) are bounded, i.e. ‖B‖ ≤ βI and ‖N‖ ≤ ηI . Since states of
the master system are bounded, therefore M(x, y) will be linearly
bounded [10].

Proof. Let us consider the following Lyapunov function:

V =
1
2
s2. (25)

The time derivative of (25) is:

V̇ = sṡ. (26)

1 Lipschitz coefficients of L1 and L2 , means: ‖1fi(x)‖ ≤ Li‖x‖, i = 1, 2.
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