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Linear look-up tables are widely used to approximate and characterize complex nonlinear functional
relationships between system input and output. However, both the initial calibration and subsequent real-
time adaptation of these tables can be time consuming and prone to error as a result of the large number of
table parameters typically required to map the system and the uncertainties and noise in the experimental
data on which the calibration is based. In this paper, a new method is presented for identifying or
adapting the look-up table parameters using a recursive least-squares based approach. The new method
differs from standard recursive least squares algorithms because it exploits the structure of the look-up
table equations in order to perform the identification process in a way that is highly computationally
and memory efficient. The technique can therefore be implemented within the constraints of typical
embedded applications. In the present study, the technique is applied to the identification of the
volumetric efficiency look-up table commonly used in gasoline engine fueling strategies. The technique is
demonstrated on a Ford 2.0L 14 Duratec engine using time-delayed feedback from a sensor in the exhaust
manifold in order to adapt the table parameters online.

© 2009 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Model-based representations are concise and able to character-
ize a wide range of operation, including dynamic behavior, with
a small set of parameters. Look-up tables or maps, on the other
hand, are useful for characterizing systems where the functional
relationship is not known or simply too complex to represent ana-
lytically. Linear look-up tables are widely used in function approx-
imation applications ranging from machine learning, floating point
numerical computation, nonlinear network analysis, and nonlinear
adaptive control systems. Details concerning the theoretical devel-
opment, construction, and implementation of these tables can be
found in the text by Leenaerts and van Bokhoven [1]. In this paper,
the primary interest is the approximation of nonlinear system re-
sponse, as in the early work of Bellman and Roth [2], with particu-
lar emphasis on real-time control and monitoring applications. In
these applications, the use of look-up tables enables the nonlinear
response of the system, within some operating region, to be char-
acterized almost arbitrarily by adjusting the relevant table param-
eter values. Generally only static relationships are represented in
this way, although it is possible to represent system dynamics by
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mapping the rate of change of a given signal of interest onto one of
the axes of the table.

Linear look-up tables are therefore highly flexible, but this flex-
ibility is achieved at the expense of a large number of parameters
required to define the grid and the commensurately high effort
required to identify their values. For the characterization of mul-
tivariable functions, each additional independent variable adds a
new axis or dimension to the table and the number of table pa-
rameters increases geometrically. For example, a 2-dimensional
table with five points on each axis contains only 25 elements
but the number of elements increases to 3125 elements for a 5-
dimensional table. Because of this geometric increase, linear look-
up tables and maps are generally confined to 1 or 2-dimensional
problems. Even in these cases, however, the issue of table param-
eter value identification remains. Not only do appropriate values
have to be determined in order to populate the table initially, but
in many cases there is also a need to adapt or calibrate the table
parameters on-line in order to account for slowly time-varying be-
haviors of the system.

In this paper, the look-up table input-output relationship is first
cast in the form of an over-determined set of linear equations. A
new recursive least squares estimation algorithm is then presented
in order to identify the table parameters while minimizing the
computational and data storage requirements relative to standard
recursive least squares methods. These requirements can be
particularly critical in real-time embedded applications where
the computational resources are limited. The new method takes

0019-0578/$ - see front matter © 2009 ISA. Published by Elsevier Ltd. All rights reserved.

doi:10.1016/j.isatra.2009.04.007


http://www.elsevier.com/locate/isatrans
http://www.elsevier.com/locate/isatrans
mailto:james.peyton-jones@villanova.edu
mailto:kenneth.muske@villanova.edu
http://dx.doi.org/10.1016/j.isatra.2009.04.007

J.C. Peyton Jones, K.R. Muske / ISA Transactions 48 (2009) 476-483 477

advantage of the particular sparse structure of the recursive least
squares matrix equations for 1-dimensional and 2-dimensional
look-up tables to obtain a very efficient numeric algorithm for
computing the recursive least squares estimate. In order to apply
the techniques presented in this work, it is assumed that the look-
up table structure (dimension and grid point placement) has been
previously established. The determination of the interpolation grid
point locations can be carried out using techniques discussed in
[1,3] and is not considered within the scope of this work.

This paper is structured as follows. Section 2 presents the
mathematical relationships for the linear look-up table parameter
identification problem in one and two dimensions respectively.
Least-squares identification is discussed in Section 3 along with an
analysis of the computational and storage requirements necessary
for these algorithms. An alternate recursive least squares approach
that takes advantage of the sparse structure of the matrix equations
representing the linear look-up table parameter identification
problem is presented in Section 4 where a simple 1-dimensional
look-up table example is used to illustrate the application of
the proposed technique. On-line calibration of the 2-dimensional
volumetric efficiency look-up table for an experimental Ford 2.0L
14 Duratec engine is then presented in Section 5 where time-
delayed feedback from a wide-ranging exhaust gas oxygen sensor
in the exhaust manifold is used to update the table parameters.

2. Linear look-up table mathematical description

Consider the 1-dimensional look-up table illustrated in Fig. 1.
The input space of the table is defined by the set of ordered (but
not necessarily equi-spaced) points x;, i € [1...n,]. The output
values at each of these points are defined by the corresponding
table parameters, 6;. Intermediate output values are determined
using linear interpolation. The index i of the desired table cell is
identified such that the input x falls within the ith table cell

i =max() | (x; <x)
= Xi =X < Xit1

(1)

and the normalized offset of x within the cell is then determined
according to,

X — X

= ———. (2)
Xit1 — X

The interpolated output is given by the relation,

y=00—-r)6 + 1011 (3)

which can also be written as the vector-vector dot product shown
in Eq. (4).

y=(-n 1) <9" ) (4)

Oit1
If only a single observation of the output is available, then it is
not possible to identify the two unknowns (6; and 6;;1) using
Eq. (4). If, however, there are many observations y(k) of the
response to excitation within a single cell i, then Eq. (4) can be
written in matrix-vector form

y = &0 (5)

where y is the vector of output values, ® is a matrix of input-
dependent interpolation factors, and 0 is a 2-element vector of the
table parameters associated with the cell of interest as shown in

Eq. (6).

y(1) 1 —=r(®) r)
y(2) 1=r@2) r@)

(n) A -rm) rn)

A
HH-I

»
»

Xit1

|
|
|
|
1
|
1
I
1
1
1
|
. : :
+ 3 T
Xi-1 Xi 1
X

Fig. 1. 1-dimensional linear interpolation.

Eq. (5) is in a form whose solution is readily obtained, but it is
unlikely in practice that the data will be constrained to a single
table cell. A general analysis to account for data values falling
within several cells is presented in the following section.

2.1. General structure of 1-dimensional tables

To generalize the analysis as the input varies over multiple cells,
the cell index i is redefined to be function of the time step k
i(k) = max@j) | (x; < x(k)) = Xigy < x(k) < Xigi+1- (7
This re-definition propagates to the offset equation

x(k) — Xigk)

Xi(k)+1 — Xi(k)
and to the interpolation equation.

rk) = (8)

v = (1= r() k) (Zf“o ) . (9)
i(k)+1

Although Eq. (9) is similar in form to Eq. (4), it is no longer possible
to re-write it according to the form presented in Egs. (5) and (6)
because the two parameters 6;), 6i()+1 no longer refer exclusively
to a single cell and may have different identities at different time
steps. The vector 0 is therefore re-defined to contain all n, table
parameter values even though only two of these will be ‘active’ at
any given time step.

0=(61 6 Ony)" - (10)

To select the appropriate pair of parameters, the matrix ® (which
now has n, columns) is defined with only two non-zero entries
in any row @' (k). These entries define the required interpolation
factors at the given time step k as follows.

(1=rk) j=ik)
@ (k); = {r(k) j=1ik) +1 (11)
0 otherwise.

For example, if the input x(k) is in cells i(k) = {2, 1, 3} for the first
three time-steps and the table itself contained n, = 5 unknown
parameters, then the matrix ® becomes

0 (1=r(1) r(1) 0 0
(1-r(@2)) r2) 0 0 0
o= 0 0 0 (12)

1-=r@3)) r3)

With these new definitions, Eq. (5) can be used to describe the look-
up table response to an input whose values x(k) can vary across the
entire input space of the table.

2.2. General structure of 2-dimensional tables

The procedure used to compute the output of a 1-dimensional
lookup table in the previous section can be extended to compute
the output of a 2-dimensional table. In this case, the input space
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