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a b s t r a c t

This paper studies the application of robust model predictive control (MPC) in a constraint process
suffering from time-delay uncertainty. The process is described using a transfer function and sampled
into a discretemodel for computer control design. A polytope is firstly developed to describe the uncertain
discrete model due to the process’s time-delay uncertainty. Based on the proposed description, a linear
matrix inequality (LMI) based MPC algorithm is employed and modified to design a robust controller for
such a constraint process. In case studies, the effect of time-delay uncertainty on the control performance
of a standard MPC algorithm is investigated, and the proposed description and the modified control
algorithm are validated in the temperature control of a typical air-handling unit.

© 2009 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Time-delay is a typical nonlinearity and exists universally in the
dynamic behaviors of many real systems. It happens probably due
tomechanic problems, internal physical phenomenon or computa-
tional delay. Approximation of high-order systemsusing low-order
models may also result in time-delay. Time-delay is an important
issue in controller design and a number of time-delay compensa-
tion strategies have been developed, such as Smith Predictor and
Internal Model Control, to improve the control performance [1].
Model-based predictive control (MPC), a practical computer con-
trol technique, has also been used to deal with the control prob-
lem of systems suffering from time-delay in that it can cope with
constraints simultaneously [2,3].
Most MPC algorithms use a state-space discrete model to de-

scribe a continuous system and optimize the control input accord-
ing to the predicted outputs or states [4]. When aMPC algorithm is
used to control time-delay systems, the length of the time-delay
is usually assumed to be known and fixed [2,3]. In practical ap-
plications, however, it is sometimes difficult to know exactly the
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length of the time-delay since time-delay may vary with the pro-
cess operating environment. For example, time-delay variations
can be observed in air-conditioning systems due to thermo-fluid
processes [5,6]. Time-delay mismatch may have a significant ef-
fect on the closed-loop response of MPC because the control per-
formance of MPC depends much on the accuracy of the predictive
model. Therefore, it is necessary to allow for time-delay uncertain-
ties directly in the MPC algorithm design when time-delay uncer-
tainties occur and seriously affect the control performance.
Generally, the dynamics of a constraint process canbedescribed

by

y (s)
u (s)
=
β1sn−1 + · · · + βn−1s+ βn
sn + α1sn−1 + αn−1s+ αn

e−τ s = G (s) e−τ s (1)

τ ∈
[
τ , τ̄

]
(2)

|u̇| ≤ δs−1 (3)

D ≤ u ≤ D̄ (4)

where G (s) is a transfer function and τ is the time-delay. The
length of the time-delay is unknown or time-varying, but it lies in
the uncertainty set defined by Eq. (2). Eq. (3) denotes a rate limit
on the control input and Eq. (4) defines the operating range of the
control input. When the continuous model described by Eq. (1) is
sampled into a discretemodel for computer control design, the dis-
cretemodel is also uncertain. In this paper, an uncertainty polytope
will be developed to describe the uncertain discrete model.
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Uncertainty polytope has been widely used in the control liter-
ature to describe uncertain models [2,4,7]. This type of uncertainty
description defines a polytope in which the parameters defining
the model must lie. It assumes that the parameters at the corners
of the polytope are known and the real system lies in which is the
convex hull of these corners [4]. For a discrete state-space model
xk+1 = Axk + B∆uk (5)
the uncertainty polytope for the coefficientmatrices A, B is defined
as

Ω :=

{
(A, B) =

L∑
i=1

λi (Ai, Bi) , λi ≥ 0 and
L∑
i=1

λi = 1

}
(6)

where Ω is the uncertainty polytope; i = 1, . . . , L denotes the
corners of Ω . The models with (Ai, Bi) at the corners are known
and the real plant may vary with time as long as it remains within
this polytope [4].
The integration of the description of time-delay uncertainties

into the framework of uncertainty polytope makes it possible to
use existing robust MPC strategies to design a robust controller for
processes suffering from time-delay uncertainties. Robust MPC is
developed fromMPC and gained popularity in recent years because
it can deal with constraints and uncertainties simultaneously
[8–10]. Many methods have been developed to formulate robust
MPC that depends on the uncertainty description associated with
the predictive model [11,12]. Because time-delay is one of the
main causes of performance degradation or instability, robust
MPC was widely investigated to deal with the control problem
of uncertain time-delay systems [13,14]. However, only a few
robust MPC algorithms have been proposed to deal with time-
delay uncertainty explicitly. This may be because time-delay
uncertainty is unstructured [15], which make it complicated to
do prediction based on such uncertain models. Robust predictive
control of uncertain systems with time-varying state-delay was
studied in [14], which dealt with time-varying state-delay in
the framework of linear matrix inequality (LMI) optimization.
Robust MPC is used in this paper to design a robust controller
for the constraint process described by Eq. (1), which mainly
suffers from input/output time-delay uncertainties. Different from
many papers on robust MPC which assume that an uncertainty
polytope is already known, this paper will show how to develop
an uncertainty polytope to describe the time-delay uncertainty in
Eqs. (1) and (2). Based on the uncertainty polytope description, an
LMI-based MPC algorithm proposed in [2] is employed for control
design. Since the original algorithm cannot take account of the
constraint (4) directly, a modified scheme is developed, which
can improve the robust stability of the controlled process when it
suffers from the constraints (3) and (4).
The basic steps of using an uncertainty polytope to describe

time-delay uncertainty are illustrated using a first-order plus time-
delay model for simplicity. It will then be extended to a more
general model in the form of Eq. (1). Case studies are mainly
performed on the temperature control of an air-handling unit
because it is a typical constraint process suffering from time-delay
uncertainties [5]. The paper is organized as follows: Section 2
illustrates how to use an uncertainty polytope to describe the
uncertain discrete model sampled from the continuous model (1)
with the time-delay uncertainty (2). Section 3 introduces twokinds
of extensions: firstly, system-gain uncertainties are integrated into
this description; and secondly it is shown that series-connected
processes with time-delay and system-gain uncertainties can also
be described using the proposed method. Section 4 describes the
modification of the LMI-based MPC algorithm for dealing with
the constraints (3) and (4). Section 5 presents two case studies:
one studies the effect of time-delay uncertainties on the control
performance of a standard MPC algorithm; and the other validates
the proposed method on the temperature control of a typical air-
handling unit. Conclusions are given in Section 6.

2. Using uncertainty polytope to describe time-delay uncer-
tainty

Consider a first-order plus time-delay model

y (s)
u (s)
=

K
1+ Ts

e−τ s (7)

where K is the process-gain and T is the time constant. Using
a sampling interval h, the continuous model can be discretized
as [16]

yk+1 = (1+ a) yk − ayk−1 + bd∆uk−d + bd+1∆uk−d−1 (8)

where a, bd, bd+1 are computed by a = e−h/T , bd =

K
(
1− e−(h−τ̃ )/T

)
, bd+1 = K

(
e−(h−τ̃ )/T − e−h/T

)
. The discrete

time-delay d and τ̃ satisfy τ = dh + τ̃ , 0 < τ̃ ≤ h. Note that
the sum of bd and bd+1 is not relative to the time-delay τ . This is
because

bd + bd+1 = K (1− a) . (9)

When the process is required to track a predefined set-point, the
tracking error is denoted as ek = yk − yr , where yr is the output
set-point. Eq. (8) can be reformulated as

ek+1 = (1+ a) ek − aek−1 + bd∆uk−d + bd+1∆uk−d−1. (10)

Define a state vector as xtk = (ek, ek−1,∆uk−d−1, . . . ,∆uk−1),
Eq. (10) is rewritten in the form of a state-space model as [16]

xk+1 = Asxk + Bs∆uk
ek = Csxk

(11)

where the coefficient matrices As, Bs and Cs are defined in
Appendix A.With an appropriate choice of h, Eq. (10) can be used to
substitute the continuous model described by Eq. (7) in computer
controller design [12]. It should be noted that the sampling interval
h will affect the dimension of the state vector as well as the
coefficientmatrices. Following the suggestion in [17], the sampling
interval is chosen as

h ≤ T/10. (12)

2.1. First-order systems suffering from time-delay uncertainty

When τ varies in the range (2), the uncertainty set for describing
the corresponding discrete state-space model sampling from the
continuous model (7) is

ΩAB =

{
(A, B) =

d̄∑
i=d

λi (Ai, Bi)

}
(13)

where Ai, Bi are defined in Appendix B. The dimensions of Ai and
Bi are (d̄+2, d̄+2) and (d̄+2, 1) respectively. The coefficients λi,
i = d, . . . , d̄, satisfy

d̄∑
i=d

λi = 1, 0 ≤ λi ≤ 1 (14)

λi + λi+1 = 1, ∀i ∈
[
d, . . . , d̄− 1

]
. (15)

The uncertainty set ΩAB defined by Eq. (13) is developed as
follows. Firstly, any continuous model in the form of Eq. (7) with
τ being inside the uncertainty range (2) can be sampled using the
sampling interval h into

Mc : ek+1 = (1+ a) ek − aek−1 + bd∆uk−d
+ bd+1∆uk−d−1 + · · · + bd̄∆uk−d̄ (16)

where d and d̄ are defined as d = fl
(
τ/h

)
and d̄ = cl (τ̄ /h); and
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