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a b s t r a c t

Determination of the order of a model is the key first step towards modeling any dynamic systems,
particularly two-dimensional processes. In this paper, a newmethod for two-dimensional (2-D) Gaussian
ARMA model order determination is proposed. In the proposed method, the AR and MA orders are first
independently determined, then the procedure for model order determination of the 2-D ARMAmodel is
outlined. Themodel is assumed to be causal, stable, linear, and spatial shift-invariantwith p1×p2 quarter-
plane (QP) support. Numerical simulations are presented to show the effectiveness of the proposed new
approach.

© 2009 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Over the last three decades, there has been considerable inter-
est in modeling two-dimensional (2-D) signals by 2-D autoregres-
sive moving-average (ARMA) models. These models are used in
several areas such as 2-D modeling [1,2], spectral estimation [3,4],
2-D system identification and parameter estimation [5–8]. In most
cases, the model order is assumed to be known. In other words, all
works in the 2-D case have focused on the problem of parameter
estimation [6–9].
In most realistic situations, however, the model order is not

known a priori and must be determined before the parameter
estimation.
During the last three decades, several new methods and

algorithms have been proposed for one-dimensional (1-D) model
order selection; however, 2-D model order selection has not
received as much attention.
The 1-D model order determination problem has been studied

for a long time, by many researchers such as Akaike [10],
Rissanen [11], Chan and Wood [12], Giannakis and Mendel [13],
Zhang et al. [14,15], Liang et al. [16], Xiao et al. [17], Al-Smadi
et al. [18,19], Gelach et al. [20], Ridder et al. [21], Pappas et al.
[22,23], etc.
The existing order determination methods can be divided into

two categories, namely, information theoretic criterion methods
and linear algebraic methods.
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Information theoretic criterion methods, e.g., AIC [10], min-
imum describing length (MDL) [11], and minimum eigenvalue
(MEV) criterion [16], are evaluated by minimizing an expression
that depends on the number of parameters. The value of order that
yields the minimum value of the selected criterion is chosen as the
best estimate of the truemodel order. The linear algebraicmethods
are based on determinant and rank testing algorithms, SVD-based
methods, etc. In these methods, the order of the system is usually
determined using the rank of special matrices. [24–27] are exam-
ples of this class.
In this paper, a new method for model order determination

of 2-D ARMA models is described. First, using a combination of
MDL criterion and instrumental variable (IV)method, 2-D AR order
selection of a 2-D ARMA model is determined. After selecting the
AR order, the MA order is determined via the SVD of a correlation
matrix. In this work, the AR and MA orders of a 2-D ARMA model
are first independently determined, then the complete procedure
is outlined.
The paper is organized as follows: The problem formulation and

the basic algorithm are described in Sections 2 and 3, respectively.
Section 4 provides numerical simulations in order to illustrate the
effectiveness of the proposed method. Section 5 concludes the
paper.

2. Problem formulation for 2-D ARMAmodel order estimation

Consider a 2-D causal, stable, linear, and spatial shift-invariant
ARMA model defined by [24]

p∗1∑
i=0

p∗2∑
j=0

ai,jyt1−i,t2−j =
q∗1∑
i=0

q∗2∑
j=0

bi,jet1−i,t2−j. (1)
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The coefficients ai,j and bi,j are the autoregressive (AR) andmoving-
average (MA) parameters, respectively. The order of the AR part is
(p∗1, p

∗

2), while the order of the MA part is (q
∗

1, q
∗

2).
In this work, the effect of noise in themeasured output data has

not been considered. The following conditions are assumed to hold.

Assumption 1. a0,0 = 1, and the sequence et1,t2 is a zero-mean
white noise process of variance σ 2e .

Assumption 2. ap∗1,p∗2 6= 0, bq∗1,q∗2 6= 0.

The region of support (ROS) is the neighbor set of the model
whose shape determines the causality of the model [28].
Since the true orders (p∗1, p

∗

2) and (q
∗

1, q
∗

2) are unknowns, the
general format of (1) with (p∗1, p

∗

2; q
∗

1, q
∗

2) replaced by unknowns
(p1, p2; q1, q2) is considered.

3. 2-D ARMAmodel order determination

The proposed algorithm has three parts, first, AR order
determination, second, MA order determination and third, 2-D
ARMA order determination algorithm. In this section, these parts
are described.

3.1. Algorithm for AR order estimation

Assuming that the data length is N1 × N2 (that is t1 =
0, 1, 2, . . . ,N1 − 1, t2 = 0, 1, 2, . . . ,N2 − 1), the Eq. (1) can be
rewritten in a matrix form as follows:

Yθ = W . (2)

In the above equation, Y is an (N1N2) × (p1 + 1)(p2 + 1) output
data matrix, θ is a (p1 + 1)(p2 + 1) × 1 parameter vector, andW
is an (N1N2)× 1 input data vector.

θ = [a0,0 . . . a0,p2a1,0 . . . a1,p2 . . . ap1,0 . . . ap1,p2 ]
T (3a)

W = [w0,0w0,1 . . . w0,N2−1w1,0w1,1 . . .

w1,N2−1 . . . wN1−1,0 . . . wN1−1,N2−1]
T (3b)

where

wt1,t2 =

q1∑
i1=0

q2∑
i2=0

bi1,i2et1−i1,t2−i2 (3c)

and

Y =


Y0 O . . . O
Y1 Y0 . . . O
...

...
...

...
YN1−1 YN1−2 . . . YN1−1−p1

 (3d)

Yi =


yi,0 0 . . . 0
yi,1 yi,0 . . . 0
...

...
...

...
yi,N2−1 yi,N2−2 . . . yi,N2−1−p2


i = 0, 1, . . . ,N1 − 1− p1. (3e)

Note that O in (3d) is a zero matrix with dimension N2 × (p2 + 1).
An instrumental variable (IV) matrix can be defined as

Z =


Z0 O . . . O
Z1 Z0 . . . O
...

...
...

...
ZN1−1 ZN1−2 . . . ZN1−1−k1

 (4a)

where

Zi =


zi,0 0 . . . 0
zi,1 zi,0 . . . 0
...

...
...

...
zi,N2−1 zi,N2−2 . . . zi,N2−1−k2

 (4b)

i = 0, 1, . . . ,N1 − 1− k1
k1 > p1, k2 > p2

where zt1,t2 is an IV sequence. Several choices of zt1,t2 are possible
as long as IV sequence is uncorrelatedwith the noise partwt1,t2 and
fully correlated with the observed part yt1,t2 [29].
In this paper, zt1,t2 emerged from the delayed observed data

yt1−l1,t2−l2 with l1 > q1, l2 > q2. Premultiplying (2) by
1
N1N2
ZT and

considering V = 1
N1N2
ZTW , the following equation is obtained

1
N1N2

ZTYθ = V (5)

V is an asymptotically Gaussian distribution with zero mean [17].
If D is defined as D = 1

N1N2
ZTY , then Eq. (5) can be rewritten as

Dθ = V . (6)

In which, dimensions of D, θ , and V are respectively (k1 + 1)(k2 +
1)×(p1+1)(p2+1), (p1+1)(p2+1)×1, and (k1+1)(k2+1)×1.
Now, the (p1 + 1)(p2 + 1)× (p1 + 1)(p2 + 1)matrix R is defined
as

R = DTD. (7)

Note that R is a symmetric and positive semi-definite matrix. The
new method proposed in this paper permits the choice of the AR
order of 2-D ARMA model in (1) with high accuracy without any
parameter estimation. This method uses both 2-D MDL criterion
and the matrix R.
In the 2-D case, the MDL order determination criterion appears

as follows [28]:

JMDL(p1, p2) = − log(f (V ))+
1
2
(p1 + 1)(p2 + 1)

× log((k1 + 1)(k2 + 1)) (8)

where f (V ) is the probability density function of V such that V =
[v0,0 . . . v0,k2 . . . vk1,0 . . . vk1,k2 ]

T. Since vt1,t2 is zero-mean white
Gaussian noise,

f (V ) =
1

(2πσ 2)
(k1+1)(k2+1)

2

exp
(
−
1
2σ 2
V TV

)

=
1

(2πσ 2)
(k1+1)(k2+1)

2

exp
(
−
1
2σ 2

θTRθ
)

(9)

where σ 2 is the variance of vt1,t2 . Replacing f (V ) by (9) into (8)
results in:

JMDL(p1, p2, θ) =
(k1 + 1)(k2 + 1)

2
log(2πσ 2)+

1
2σ 2

θTRθ

+
1
2
(p1 + 1)(p2 + 1) log((k1 + 1)(k2 + 1)). (10)

Now, consider the following Lemma.

Lemma ([28]). For fixed-order (p1, p2) and constraining θ to have
unit Euclidean norm, the choice of θ that minimizes (10) is found to
be the eigenvector associated with the minimum eigenvalue (λmin)
of R.
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