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a b s t r a c t

In this paper, the authors have represented the nonlinear system as a family of local linear state space
models, local PID controllers have been designed on the basis of linear models, and the weighted sum of
the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear
process. Further, NonlinearModel Predictive Controller using the family of local linear state spacemodels
(F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated
on a CSTR process, which exhibits dynamic nonlinearity.
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1. Introduction

PID controller and linear model predictive controller are
the two most popular control schemes that have been widely
implemented throughout the chemical process industries for the
past two decades. However, control of nonlinear system using
above linear control schemes don’t give satisfactory performance
at all operating points, the reason being that the process
parameters of the nonlinear process will vary with the operating
conditions. Moreover, the PID controller tuned at one operating
condition may not provide satisfactory servo and regulatory
performances at shifted operating points. It should be noted that,
to achieve improved closed loop performance a different set of
controller settings for each operating condition have to be used.
In the case of model based control schemes, the accuracy of the

model will have a significant effect on the closed loop performance
of the control system. Themultiple-linearmodels concept has been
used in the recent years for modeling of nonlinear systems [1].
In addition, multiple-linear model based approaches for controller
design [2–5] have attracted the process control community. A
plethora of multiple-model adaptive control schemes have been
proposed in the control literature [6–9]. Gao et al. [10] has
proposed a nonlinear PID controller for CSTR using local model
networks. Omar Galan et al. [11] have reported the real-time
implementation of multi-linear model based control strategies on
the laboratory scale process.
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A simple way to describe a nonlinear dynamic system using
multiple linear models has been proposed by Takagi–Sugeno [12]
and it is being used in this paper to develop Nonlinear PID con-
troller and Nonlinear Model Predictive Controller. The proposed
control scheme consists of a family of controllers (Local Con-
trollers) and a scheduler. As suggested by Kuipers and Astrom [13],
either local PID controller outputs or the local PID controller pa-
rameters can be interpolated. In the case of interpolation of con-
troller parameters, the controllers’ structure have to be assumed
as homogeneous, whereas interpolation of controllers output does
not impose any such constraints. At each sampling instant, the
scheduler will assign weights for each controller and the weighted
sum of the outputs will be applied as an input to the plant in the
case of interpolation of local controller outputs.
As suggested, one can also apply operating regime approaches

to develop an operating regime based model that can be applied
in a model-based controller [14,15]. Since global information can
be applied to determine the control input at each sampling instant,
the nonlinear model based controller is expected to achieve better
control performance. Recently, stability analysis of a multi-model
predictive control algorithm with an application to the control
of chemical reactors has been reported by Leyla, Özkan and
Kothare, [16].
The key unit operation in chemical plants namely the continu-

ous stirred tank reactor (CSTR) exhibits highly nonlinear dynamic
behavior. Hence, there arises a need to develop computationally
non-intensive control schemes in order to achieve tighter con-
trol of strong nonlinear processes. A plethora of advanced con-
trol schemes such as neural adaptive controller [17], nonlinear
internal model control scheme [18] and fuzzy model predictive
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Nomenclature

CA Concentration (mol/l)
T Temperature (K)
qc Coolant flow rate (l/min)
q Feed flow rate (l/min)
CA0 Feed concentration (mol/l)
T0 Feed temperature (K)
Tc0 Inlet coolant temperature (K)
V CSTR volume (l)
hA Heat transfer term (cal/(min K))
k0 Reaction rate constant (min−1)
E/R Activation energy term (K)
−1H Heat of reaction (cal/mol)
ρ, ρc Liquid density (g/l)
Cp, Cpc Specific heats (cal/(g K))
x(k) True state variable
y(k) Measured variables
u(k) Process inputs
A State transition matrix (continuous domain)
B Input matrix (continuous domain)
C Measurement matrix
Ki Steady State gain of the ith process model
Kc,i Proportional gain of ith PID controller
Tr,i Integral time of ith PID controller
Td,i Derivative time of ith PID controller
NP Prediction horizon
Nc Control horizon
WE Error weighting matrix (N-MPC)
WU Controller weighting matrix (N-MPC)

Greek letter words

Φ State transition matrix (Discrete domain)
Γ Input coupling matrix (Discrete domain)
ξ Damping factor
ωn Un-damped natural frequency
λ Tuning parameter (IMC-PID controller)

control scheme [19] have been already attempted on the CSTR pro-
cess which is considered for the simulation study in this paper.
Even with the introduction of powerful nonlinear control strate-
gies such as nonlinear internal model control schemes and neural
adaptive control, the proposed control schemes remain an attrac-
tive control strategy, because it offer advantages such as simple de-
sign and low computational complexity.
The main contributions of the paper are as follows: firstly, the

nonlinear system is represented as a family of local linear state
space models. Secondly, local PID controllers have been designed
on the basis of local linear models, the weighted sum of the
output from local PID controllers has been used to control the
nonlinear process, and finally a nonlinear model predictive control
scheme using the family of local linear state spacemodels has been
proposed to control nonlinear process.
The organization of the paper is as follows. Section 2 discusses

the T–S fuzzymodel. Section 3 presents the design of nonlinear PID
controller. Section 4 deals with nonlinear model predictive control
schemes formulation using local linear models. Section 5 deals
with analytical (first principle) model based predictive control
formulation. The process considered for simulation study has
been discussed in Section 6. Simulation results are presented in
Section 7 and the conclusions drawn from the simulation studies
in Section 8.

2. Takagi–Sugeno (T–S) fuzzy model

Consider a nonlinear system represented by the following
nonlinear differential equations:

ẋ =
−

f (x, u, d) (1)

y =
−

g(x, u, d). (2)
Eq. (1) describes a deterministic system evolution and can be

obtained from the material and energy balances of the process
under consideration. Eq. (2) describes the relationships between
the measurements and the state variables. In order to describe a
discrete nonlinear system, Eqs. (1) and (2) can also be functionally
represented in discrete form as
x(k) = f [x(k− 1), u(k− 1), d(k− 1)] (3)
y(k) = g [x(k− 1), u(k− 1)] (4)
where, x(k) is the system state vector (x(k) ∈ Rn), u(k) is the
system input/known deterministic input (u(k) ∈ Rm), d(k) the
unmeasured disturbance/unknown input (d(k) ∈ Rq), and y(k) is
the measured variable (y(k) ∈ Rr ). The parameters k represents
the sampling instant and the symbol f and g represent an n-
dimensional function vectors. We assume that measurements are
made at discrete sampling instants with sampling period T . Note
that the d(t) term described in Eq. (1) is assumed to be piecewise
constant for kT ≤ t < (k+ 1)T
A T–S fuzzy model has been proposed to represent a nonlinear

system using locally linearized models [12]. Two different
methods for developing a T–S fuzzy model have been suggested
in the literature, namely (i) the black box identification via
fuzzy clustering technique [20] and (ii) Linearization of an
existing nonlinear system around the centers of the fuzzy region
partitioning the state space. The T–S fuzzy model is nothing
but a piecewise interpolation of local linear models through
membership function. The T–S fuzzy model is described by IF-
THEN rules, which represent local linear relations of the nonlinear
system. The rule to describe the nonlinear system around an
operating point is as follows:
Rule i (i = 1 : N)
If z1(k) isMi,1 and . . . and zg(k) isMi,g then

xi(k) = Φi(x(k− 1)− x̄i)+ Γi(u(k− 1)− ūi) (5)
yi(k) = Cixi(k) (6)
where, zj(k) are the premise variables andMij(k) are the fuzzy sets.
Φi, Γi, and Ci are known time invariant matrices of appropriate
dimensions. In this work it is assumed that such a model of the
process can be developed from the first principles by linearizing
them around different operating steady state values (x̄i and ūi). The
global system behavior is described by a fuzzy fusion of all linear
model outputs. For a given input vector, u(k), the global state and
output of fuzzy model are inferred as follows:

x(k) =
N∑
i=1

hi(z(k))[Φi(x(k− 1)− x̄i)

+Γi(u(k− 1)− ūi)+ x̄i] (7)

y(k) = Cx(k) (8)
where the membership grades hi(z(k)) are defined as

hi(z(k)) =
µi(z(k))
µ(k)

(9)

µi(z(k)) =
g∏
j=1

Mij (10)

µ(k) =
N∑
i=1

µi(z(k)). (11)
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