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A continuous analysis of multi-input, multi-output predictive control
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Abstract

A continuous formulation and method of analysis is constructed for multi-input, multi-output (MIMO) predictive control and used to compare
Dynamic Matrix Control (DMC) with Simplified Predictive Control (SPC). Approximate characteristic equations are derived for each of DMC
and SPC and these are used to determine, and thus compare, the closed-loop control behaviour of these methods at times long compared with
the sampling time. The MIMO control problem considered is the general case of control over two coupled zones of a first order, linear process
where a single control move is simultaneously input into each zone and a single output or measurement, is made from within each zone. The
analytical results are illustrated through MIMO control of the terminal composition of a binary distillation column. A practically important result
is an analytic basis to understand previous experimental observations that, for a wide range of processes, SPC appears to be as capable as the
more sophisticated DMC. Furthermore, it is also shown here that SPC is well-conditioned over its entire parameter range in contrast to DMC.
This well-conditioned behaviour makes it especially suitable for remote applications where unknown, and variable timing of future moves may
be a significant issue.
c© 2007 Published by Elsevier Ltd on behalf of ISA.
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1. Introduction

Model predictive control, or MPC, is becoming increasingly
popular in the research control community and industry.
A recent and extensive review may be found in [1–9].
The main reason for the popularity of MPC is its ease of
coping with dead time, inverse response, interactions between
loops, and constraints in the Multi-Input/Multi-Output (MIMO)
implementation.

Most predictive control methods utilize least squares and/or
other control move constraints that require the optimization of
a cost function over a so-called ‘control horizon’ that equals
the number of control moves computed at each control step
(only one move is actually used at each control step). As such,
MPC follows a matrix formalism and in its most basic form,
is termed ‘Dynamic Matrix Control’, or ‘DMC’. The earliest
formal presentation of DMC was in [2] where the basic least
squares framework was first presented and upon which most
other DMC algorithms have continued to build. However, due
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to computational complexity and tuning difficulties caused by
ill-conditioning, more simplified approaches have also been
suggested.

A large simplification, proposed in [5], entirely removed
the least squares constraint and reduced DMC to a bare-
bones algorithm based upon calculation of the future error at
a single location. This ‘simplified predictive control’ (SPC)
has no matrices to consider and is an extreme computational
simplication.

The SPC method was originally demonstrated [5] on
three experimental examples showing overdamped open-
loop responses: (i) a three-input, three-output MIMO control
problem without significant delays but with significant
interaction between the three zones, (ii) a single-input,
single-output (SISO) servo control problem giving an
inverse response, and (iii) a two-input, two-output with
both measurement and state delays. In all three examples,
robustness against severe modelling errors and disturbances
was considered and SPC compared well with DMC control
under the same conditions. Thus, it was concluded [5] that the
ability to handle modelling errors, disturbances, interactions
between zones and time delays is uncompromised by SPC.
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However, as stated in [5], reliance in the SPC algorithm upon
a future error found at a single location may require more
locations for open-loop responses that are underdamped.

A recent industrial study for constrained, online control
of multivariable, nonlinear processes and a literature review
of SPC, funded by Imperial Oil’s University Research Grant
programme, is in [6]. The focus of that work was to show
that SPC was suited to this class of control application
and to give details in the design of the control algorithm
and methods to choose control parameters. The method
was implemented using a direct approach, usually reserved
for matrix predictive methods, where the constraints were
embedded in the optimization problem allowing for a direct
solution of the optimization problem. The discussion of SPC
in [6] was limited to its relative design and computational
simplicity in comparison with patented methods such as
Quadratic Dynamic Matrix Control (QDMC). Any discussion
of results comparing QDMC and SPC on industrial equipment
would have required special permission from the QDMC patent
holder. Published comparisons of QDMC performance with
SPC on smaller, pilot-scale equipment, may be found for
example in [7].

These results show that the simplifications made in SPC in
comparison with matrix-based predictive control methods do
not appear to compromise its performance for a wide range of
control applications.

Further analytical work [4] on continuous DMC [2]
formulations have gone on to show that, for typical Single-
Input/Single-Output (SISO) implementations based upon a
control horizon of two moves, SPC actually generalizes
the DMC form. In addition, the discrete form of SPC is
well-conditioned to parameter changes while DMC is badly
conditioned to changes, for example, in sampling time.
Practically, this means that although the same discrete control
can be obtained from both methods, the well-conditioned
behaviour of SPC extends to all control rates. The upshot is
that SPC, unlike DMC, is easily tuned through all closed-
loop control rates [4]. This unexpected feature, found through
the analytical study, means that SPC is suited to control in
networked and/or remote control situations where the timing
of moves is unknown a priori due to unknown communication
delays.

The previous discussion brings up the central question of
this work: ‘How does DMC [2] compare with SPC [5] in
the MIMO control situation?’ This point has been thoroughly
experimentally investigated in [5,8] where it was found,
for a variety of control situations, that there appears to be
little difference in the control results for SPC and DMC
control methods. An analytical basis for understanding these
experimental results has yet to be found and is the focus
of this work. The method used here to compare DMC and
SPC, MIMO control is based upon the construction of closed-
form, large-time (times much larger than the sampling times)
approximations to the continuous DMC and SPC responses
via their characteristic equations. The results indicate a larger
feature, that matrix-free control formulations that relax the
commonly used least-squares constraint, may provide a generic

means to circumvent predictive control ill-conditioning without
sacrificing controllability.

A reduction in ill-conditioning is practically important, as
stated earlier, in networked or remote control systems where an
ill-conditioned response to changes in sampling times caused
by communication delays may unduly compromise control
performance.

2. MIMO notation

The multi-input, multi-output closed-loop control applica-
tion is assumed without loss of generality to involve two zones.
Control inputs are found for each zone that account for inter-
actions between them. The linear and time-invariant plant re-
sponse in the ‘Y ’ Zone is y(t) and in the ‘Z ’ Zone is z(t) and
the response to respective accumulated inputs u(t) and v(t) is

y(t) = u′(t) ∗ p(t) + v′(t) ∗ q(t)

z(t) = u′(t) ∗ r(t) + v′(t) ∗ s(t) (1)

where ‘∗’ denotes convolution and the functions p(t), q(t), r(t)
and s(t) are open-loop responses. Specifically, p(t) and r(t) are
the respective responses in Zone ‘Y ’ and ‘Z ’ to a unit input,
u(t) = 1, into Zone ‘Y ’ and a zero input, v(t) = 0, into Zone
‘Z ’. On the other hand, q(t) and s(t) are the responses in Zone
‘Y ’ and ‘Z ’ to a zero input, u(t) = 0, into Zone ‘Y ’ and a unit
input, v(t) = 1, into Zone ‘Z ’.

The closed loop control problem involves the application
of piecewise constant control changes, or moves, that are held
constant for a time ∆t between moves. Each new move, ∆un
is applied at time tn = n∆t for a duration ∆t . Because the
moves are piecewise constant, the process response is naturally
restated in a discrete, or ‘sampled’, form. The sampled plant
response in the ‘Y ’ and ‘Z ’ zone is respectively labelled
yn(t j ) ≡ yn

j and zn(t j ) = zn
j where: (i) the superscript implies

that the moves ∆u0, . . . ,∆un−1 and ∆v0, . . . ,∆vn−1 are past
moves, and (ii) the subscript notation, j ≥ 1, refers to the
predicted plant response. Thus, the current plant response at
time tn+0, the zero in the subscript highlights the choice of
j = 0, is yn

0 and zn
0 . Similarly, the predicted plant response

to these past moves, at times tn+ j = (n + j)∆t , is yn
j and zn

j ,
j ≥ 1. The discrete form of the plant response in each zone
may be written as

yn
i =

n∑
j=1

∆un− j pi+ j +

n∑
j=1

∆vn− j qi+ j

zn
i =

n∑
j=1

∆un− jri+ j +

n∑
j=1

∆vn− j si+ j (2)

where pn , qn , rn , and sn are the open-loop tests, p(t), q(t), r(t),
and s(t), sampled at times t = tn .

Now, the predicted errors of the plant response in each zone,
due to past moves, are êT

= (dn
1 , dn

2 , . . . , en
1 , en

2 , . . .). The error
components, dn

i and en
i , are the differences in the ‘Y ’ and the

‘Z ’ zone between the setpoint trajectories, yn
spi

and zn
spi

, and the
corresponding plant responses yn

i and zn
i . In the standard DMC

model, the future move vector is chosen to zero the predicted
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