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a b s t r a c t

State estimation is a major problem in industrial systems. To this end, Gaussian and nonparametric
filters have been developed. In this paper the Kalman Filter, which assumes Gaussian measurement
noise, is compared to the Particle Filter, which does not make any assumption on themeasurement noise
distribution. As a case study the estimation of the state vector of a DC motor is used. The reconstructed
state vector is used in a feedback control loop to generate the control input of the DCmotor. In simulation
tests it was observed that for a large number of particles the Particle Filter could succeed in accurately
estimating the motor’s state vector, but at the same time it required higher computational effort.

© 2008 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

During recent years, there has been significant effort in
improving the performance of electric motors. The applications
of AC motors are mainly concerned with motion transmission
systems [1]. On the other hand, DC motors are widely used in
industrial systems, such as robotic manipulators, because their
control is relatively simple and they are reliable for a wide range
of operating conditions. DC motors are usually modelled as linear
systems and then linear control approaches are implemented [2].
Additionally, controllers for nonlinear DC motor models have
been developed [3]. If the nonlinearities of the motor are
known functions, then adaptive tracking control methods with
the technique of input–output linearization can be used [4–7].
When these nonlinearities or disturbances are unknown, neural
or fuzzy control can be more suitable for ensuring the satisfactory
performance of the closed-loop system [8–15].
The possibility of reducing the number of sensors involved

in the control loops of electric motors has been also studied. To
this end, feedback control with observer-based state estimation,
is also of interest for research in the areas of power electronics
and control. In [16] state vector estimation with the use of a high-
gain observer and adaptive control is applied to a transverse flux
permanentmagnetmotor. In [17] maximum likelihood hypothesis
testing is used to derive a nonlinear observer for estimating
the state vector of dynamical systems. The proposed observer is
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applied to friction estimation and diagnosis in a rotating machine.
In [18] Kalman filtering is proposed for estimating the state vectors
of a discrete-time nonlinear system. The estimated state vector
generates residuals which in turn are used by a fault diagnosis
algorithm which decides on the system’s condition. In [19,20]
observer-based feedback control is proposed for linear systems.
It is known that for linear systems subject to Gaussian

measurement or process noise the Kalman Filter is the optimal
state estimator, since it results in minimization of the trace of
the estimation error’s covariance matrix [21,22]. For nonlinear
systems, subject toGaussian noise one could use the generalization
of the Kalman Filter as formulated in terms of the ExtendedKalman
Filter. The Extended Kalman Filter is based on a linearization of
the system dynamics using a first order Taylor expansion, and
thus there is neither a proof of its convergence, nor a proof that
the estimation produced by the EKF satisfies optimality criteria.
To overcome the limitations of KF and of EKF the Particle Filter
(PF) has been proposed [23–25]. It has been shown that PF-
based state estimation is suitable for industrial systems, subject
to non-Gaussian noise, such as the CSTR system (continuously
stirred reactor), and the four-tank system [26].Moreover, PF-based
state estimation has been proposed for control and fault diagnosis
tasks in mechanical/robotic systems [27–32]. The particle filtering
algorithm reminds one of the genetic algorithms where a number
of N particles is subject to a mutation mechanism which
corresponds to the prediction stage, and to selection mechanism
which corresponds to the correction stage [33–35].
The main features of particle filtering are summarized in the

following: (i) it is a nonparametric state estimator since it is
not dependant on assumptions about the p.d.f. of the process
and measurement noises and can function equally well for
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Gaussian and non-Gaussian noise distributions. (ii) it has improved
performance over the Extended Kalman Filter, since it can provide
optimal estimation in non-Gaussian state-space models, as well
as in estimation of linear and nonlinear models [36–40], (iii) it
is not based on any linearization of the system dynamics and
can be very efficient in state estimation in nonlinear dynamical
systems, (iv) when applied to linear systems with Gaussian noise,
the Particle Filter asymptotically approaches the Kalman filter if
the number of particles becomes large.
The structure of the paper is as follows: In Section 2 the

problem of state estimation and control of DC motors is analyzed.
In Section 3 state estimation with the use of Kalman Filtering is
discussed. In Section 4, the particle filtering algorithm for state
estimation in dynamical systems is introduced. The prediction and
correction stages are explained. In Section 5 issues for improved
resampling and substitution of the degenerate particles in the
Particle Filter algorithm are discussed. In Section 6 simulation
experiments are carried out to evaluate the performance of the
Kalman Filter and the Particle Filter in reconstructing the state
of the DC motor and subsequently in using this state estimation
in feedback control. Finally, in Section 7 concluding remarks are
stated.

2. State estimation in the control loop of DC motors

2.1. DC motor modelling

A direct current (DC) motor model converts electrical energy
into mechanical energy. The torque developed by the motor shaft
is proportional to the magnetic flux in the stator field and to
the current in the motor armature (iron cored rotor wound with
wire coils). There are two main ways of controlling a DC motor:
the first one named armature control consists of maintaining the
stator magnetic flux constant, and varying (use as control input)
the armature current. Its main advantage is a good torque at high
speeds and its disadvantage is high energy losses. The second
way is called field control, and has a constant voltage to set up
the armature current, while a variable voltage applied to the
stator induces a variable magnetic flux. Its advantages are energy
efficiency, inexpensive controllers and its disadvantages are a
torque that decreases at high speeds [41]. The position (angle)
of the motor is measured using an encoder, while the motor’s
rotational speed and angular acceleration can be also recorded by
the use of a tachometer and an accelerometer respectively.
The objective is to estimate the state vector of the DC motor

from encoder measurements using either the Kalman Filter or
the Particle Filter, and to use subsequently the reconstructed
state vector in a feedback control law. The motor’s angle has to
follow accurately a specified trajectory. Amodel that approximates
the dynamics of the DC motor is derived as follows: the torque
developed by the motor is proportional to the stator’s flux and to
the armature’s current thus one has

Γ = kfΨ Kα I (1)

where Γ is the shaft torque, Ψ is the magnetic flux in the stator
field, and I is the current in the motor armature. Parameter
Kα = PZα/2πα is related to the number of poles P , the number
of wires in each armature winding Zα and the number of parallel
windings α. Parameter kf is related to the magnetic flux and may
vary with the length of the air-gap between the stator and the
rotor as well as with the magnetic permeability. Since the flux is
maintained constant the torque of Eq. (1) can be written as

Γ = kT I, where kT = kfΨ Kα. (2)

Fig. 1. Parameters of the DC motor model.

Apart from this, when a current carrying conductor passes through
a magnetic field, a voltage Vb appears corresponding to what is
called the electromagnetic force (EMF)

Vb = keω (3)

where ω is the rotation speed of the motor shaft. The constants kT
and ke have the same value. Kirchhoff’s law yields the equation of
the motor (Fig. 1):

V − Vres − Vcoil − Vb = 0 (4)

where V is the input voltage, Vres = RI is the armature resistor
voltage (R denotes the armature resistor) and Vcoil = Lİ is the
armature inductance voltage. The motor’s electric equation is then

Lİ = −keω − RI + V . (5)

From the mechanics of rotation it holds that

Jω̇ = Γ − Γdamp − Γd. (6)

The DC motor model is finally

Lİ = −keω − RI + V
Jω̇ = keI − kdω − Γd

(7)

with the following notations

Notation Significance

L Armature inductance
I Armature current
ke Motor electrical constant
R Armature resistance
V Input voltage, taken as control input
J Motor inertia
ω Rotor rotation speed
kd Mechanical dumping constant
Γd Disturbance torque

where the armature designates the iron cored rotor wound with
wired coils. Assuming Γ̇d = 0 and denoting the state vector
as [x1, x2, x3]T = [θ, θ̇ , θ̈ ]T, a linear model of the DC motor is
obtained:(ẋ1
ẋ2
ẋ3

)
=


0 1 0
0 0 1

0
−k2e − kdR

JL
−JR− kdL
JL

(x1x2
x3

)
+

 00ke
JL

 V . (8)

Usually the DC-motor model is considered to be linear by
neglecting the effect of armature reaction or by assuming that
the compensating windings remove this effect. Introducing the
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