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a b s t r a c t

The space-charge-limited current in a zero thickness planar thin film depends on the geometry of the
electrodes. We present a theory which is to a large extent analytical and applicable to many different lay-
outs. We show that a space-charge-limited current can only be sustained if the emitting electrode in-
duces a singularity in the field and if the singularity induced by the collecting electrode is not too strong.
For those lay-outs where no space-charge-limited current can be sustained for a zero thickness film, the
real thickness of the film must be taken into account using a numerical model.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

When charge carriers are injected into an electrically poorly
conducting medium, the current is space-charge-limited and when
the medium has Ohmic conductivity, with increasing voltage, the
current eventually becomes also space-charge-limited. This phe-
nomenon has been known for a long time in a one-dimensional
(1D) setting as described by the Mott-Gurney equation [1].

J ¼ 9
8
m 3

V2

L3
(1)

with V the voltage, J the current density, L thewidth of the insulator,
3it's dielectric constant and m the mobility of the carriers. Eq. (1)
holds in particular for single carrier injection under perfect injec-
tion conditions, meaning that the electric field is zero at the
injecting electrode. Similar behavior has been observed in a planar
two-dimensional (2D) setting in organic thin films [2e5] and more
recently in several types of monolayers [6,7]. In Ref. [8] we derived
the following 2D version of Eq. (1) for an infinitesimally thin layer
between two semi-infinite co-planar electrodes

K ¼ 2
p

3m
V2

L2
(2)

where K is the surface current density, and similar additional re-
sults were also obtained for a photoconductor. Subsequently we
discovered a paper by Grinberg et al. [9] where besides this “strip”
lay-out two more lay-outs were considered: a thin film between
two parallel electrodes perpendicular to the film (“plane” lay-out)
and a thin film with small “edge” electrodes. These lay-outs are
shown in Fig.1 together with the idealized models used to calculate
the current. Indeed only “the limiting case of a vanishing film
thickness” was considered and the relevant equations were solved
numerically with the aim to obtain the prefactor a occurring in the
general expression

K ¼ a 3m
V2

L2
(3)

They found respectively astripz0.7, aplanez1 and aedgez0.57.
When we applied our analytical method to these idealized “plane”
and “edge”models we found that actually aplane¼aedge¼0, meaning
that in these idealized structures no space-charge-limited (SCL)
current can be sustained and to obtain a practical result the film
thickness must be taken into account.

In this paper we explore the dependence of the prefactor a in (3)
on the lay-out systematically and analytically as much as possible.E-mail address: Patrick.DeVisschere@UGent.be.
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In Section 2 we explain our method by deriving the value of astrip
for the reference case of two semi-infinite coplanar electrodes. In
Section 3 this result is extended to other lay-outs using conformal
transformations and as a result we obtain several limits leading to
the zero result for the “plane” lay-out. In Section 4 we consider an
approximate and numerical model for a thin film between planar
electrodes but with a non-zero thickness. In Section 5 we turn our
attention to electrodes with finite width, in particular the idealized
“edge” electrodes. In this case a slightly different method must be
used and a single numerical integration is required to find a. In the
last Section 6 we consider asymmetrical lay-outs.

In their paper Grinberg et al. refer to a paper by Geurst [10]
where the exact expression 2

p for the prefactor occurring in (2) for
the “strip” lay-out was derived, as far as we know, for the first time.
This result was found by solving analytically a boundary value
problem for the square of the complex electric field. In our method
[8] the problem is reduced to solving a non-linear integral equation
with a known solution, which was published by Peters [11]. Wewill
also show how these two methods are related. A totally different
approach to the problem, based on E-Infinity theory, was published
by Zmeskal et al. [12].

Eqs. (1)e(3) and the rest of this paper holds for drift transport.
For ballistic transport Eq. (1) must be replaced by the (1D) Child-
Langmuir law. Some studies of 2D versions of the Child-Langmuir
law have been published for parallel electrodes [13e17]. In what
follows we consider the injection of positive charges from the
anode (emitter) to the cathode (collector) but the results are
obviously equally valid for negative charges.

2. Semi-infinite coplanar electrodes

Photoconductors are often contacted by two interdigitated
electrodes and if the fingers are much wider than the gaps in be-
tween then this lay-out can be approximated well by two semi-
infinite coplanar electrodes as shown in Fig. 2.

In the calculations we will use only normalized quantities with
the channel width L¼2 and the applied voltage V¼1. The true sur-
face current density K is then written as

K ¼ 2 3m
r

2 3
Ex
4V2

L2
(4)

where the in-plane component of the electric field Ex and the upper
out-of-plane component Eþy ¼ r

2 3
, with r the surface charge density,

are normalized by 2V/L. Comparing with (3) we then find the
prefactor from the equation

a ¼ 8Eþy Ex (5)

where the field components must still satisfy Maxwell's equations.
Assuming Eþy known for all x, and using the Green's function, Ex is
easily found as

ExðxÞ ¼ 1
p

Zþ∞

�∞

Eþy ðtÞ
x� t

dt (6)

where the integral is a Cauchy principal value integral. From this
equation we learn that both field components are connected by a
Hilbert-transform over the real axis. Since the Hilbert-transform
equals it's own inverse, except for a sign reversal, we find
immediately

Eþy ðxÞ ¼
1
p

Zþ1

�1

ExðtÞ
t � x

dt (7)

where we also used the boundary condition that along the elec-
trodes Ex¼0. Substituting (7) in (5) we find that the unknown
function f¼Ex most be chosen in such a way that the following
expression

a ¼ 8
p
fðxÞ

Zþ1

�1

fðtÞ
t � x

dt (8)

is a constant within the gap �1<x<1 and zero elsewhere. This type
of equation can be solved analytically [8,11] but to obtain a the
explicit solution is not needed (in Section 5 we explain how the
field components can be obtained). It suffices to integrate (8) over
the gap after removing possible singularities. This condition is
necessary for reversing the order of integration in the rhs.1 In this
particular case the in-plane component of the electric field shows a
singularity near x¼1 only, whereas Ex(�1)¼0 because of the perfect
injection boundary condition. Multiplying Eq. (8) with the factor
(1�x) and integrating we obtain

a ¼ 4
p

Zþ1

�1

fðxÞð1� xÞdx
Zþ1

�1

fðtÞ
t � x

dt (9)
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Fig. 1. Different 2D thin film lay-outs considered by Grinberg et al. [9]: (a) “strip” lay-
out, (b) “plane” lay-out and (c) “edge” lay-out. For each lay-out the actual lay-out with
a non-zero film thickness is shown next to the idealized one with a zero thickness thin
film and which is used in their model.
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Fig. 2. Idealized “strip” lay-out for 2D SCL current flow. The electrodes are shown as
thick lines and the actual channel where current flows by the broken line. The small
circles have no physical meaning and are used to mark specific points only. We use
coordinates (x,y) as indicated with the complex variable z¼xþjy.

1 Formally
R b
a f1ðxÞdx

R b
a

f2ðtÞ
t�x dt ¼

R b
a f2ðtÞdt

R b
a

f2ðxÞ
t�x dx if f12Lp1 , f22Lp2 with

p�1
1 þ p�1

2 � 1 [18]. Since p2<2 we need p1>2.
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