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a b s t r a c t

The potential distribution between a grid and two plates is an electrostatic problem already solved for
various applications such as MultiWire detectors used in Nuclear Physics, or electrostatic precipitators in
Engineering. Since references and notations for this analytical solution are ancient and rather bewil-
dering, the first part of this paper presents a revisit and a discussion of the formulations that assume a
line charge on the wire. This is completed by establishing a ready-to use closed-form expression valid for
the general configuration where the plates are not grounded. The second part is about the investigation
of the line model accuracy close to the wires, using both analytical and numerical approaches. In the
symmetric case where the grid is placed at equal distances between two grounded plates, it is shown
that the error can be modelled using a quadrupole charge. For the asymmetric case, a larger discrepancy
of the line model is brought to light, with an error featuring a dipole-like distribution. In order to cope
with this small but not negligible error, a classical dipole model is implemented, leading to an accurate
theoretical expression of the potential.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The potential distribution created by a conductive grid is a
classical electrostatic problem solved several decades ago [1]. In
engineering, its solution is used to model systems containing a grid,
e.g. electrostatic precipitators [2]. Another application is the Multi-
Wire Proportional Counter (MWPC) invented in the ‘70s for Nuclear
Physics [3,4]. Many analytical techniques can be employed to
solve this electrostatic problem: eigenfunctions expansion [5],
conformal mapping [6,7], Green's functions [8], or special functions
[1,3,8].

First, this paper proposes to revisit the closed-form expressions
originating from works using different notations, formulations, or
even languages [9,10]. Moreover, while expressions given in [3]
only apply if the grid is placed between two grounded plates, our
results are readily usable for an arbitrary configuration.

Secondly, this study investigates the accuracy of the formulas of
the potential around the wire: actually, expressions given in [3] are
derived from a line model of the electrodes, thus considering wires
as lines instead of cylinders. The validity of this assumption is
discussed in this paper. As a reference for precise determination,

Laplace's equation is solved numerically using Comsol Multi-
physics®, a commercial Finite Element Model (FEM) package.

Much of the current research on this topic focuses on the nu-
merical approach [11], particularly useful when space charge ef-
fects are considered [12]. However, accurate analytical expressions
are always necessary to design a prototype containing conductive
grids, justifying the investigation presented herein.

The paper is organized as follows: in section 3, several formulas
of the symmetric case (i.e. grid at equal distance between grounded
plates) are recalled, and their compatibility and differences are
discussed. Then, the general (asymmetric) case is considered in
section 4, introducing a modern technique presented in [8] to solve
the electrostatic problem. In section 5, the limitations of the line
model used for MWPC are presented, using both theoretical and
numerical approaches.

2. Notations and mathematical tools

The grid is constituted of parallel cylindrical wires along the z-
axis with radius r0 and pitch s ¼ 2a. It is placed between two
conductive parallel plates at a distance b from each other. The wire
charge per unit length, l, depends on the potential Vg applied to the
grid and the potentials V1, V2 of the two plates.

To solve this 2D electrostatic problem, it is convenient to use theE-mail address: gerard.orjubin@gmail.com.
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complex-valued variable z ¼ xþ jy, where x and y are the Cartesian
coordinates, as well as the complex electrostatic potentialFðzÞ such
as the electric potential is Vðx; yÞ ¼ Re½FðzÞ�. It is recalled [1,10] that
the complex electric field can be expressed as

E ¼ Ex � jEy ¼ �dF
dz

(1)

In the case of a line charge placed at z0 in free space, the complex
potential is known to beFðzÞ ¼ �l

2pε0
logðz� z0Þ; the potential is then

expressed as Vðx; yÞ ¼ �l
2pε0

logjz� z0j. It is noticeable that the
argument of the logarithm function has a simple zero at the line
location, property that will be fulfilled for the models presented in
sections 3 and 4.

Two special functions are used in this paper, and some identities
from [13] are provided in the Appendix. The Jacobi elliptic function
sn(u,m) is doubly periodic for the complex variable u, with period
4K and 2K0 for the real and imaginary axis, respectively. The nome is
the quantity q ¼ expð�p K 0=KÞ, that is related to the parameter m
through a method presented in the Appendix. The first Jacobi theta
function can be noted q1ðujtÞ with the complex half-period
t ¼ j K 0=K . This function also depends on q ¼ expðjptÞ and can be
expanded as an easy-to-compute Fourier series, as indicates Eq.
(A.1).

3. Solution for the symmetric case

Many expressions can be found in literature for the symmetric
case in which the grid is placed at mid-distance between two
grounded plates. Three models [3,7,14] are recalled and discussed
hereafter. Throughout this section, the origin is chosen on the grid,
as illustrated in Fig. 1.

To facilitate the link with the original papers, both geometric
parameters a and s ¼ 2a will be used throughout this section.

3.1. Expression with Jacobi elliptic sine function

In this subsection, the remarkable compact expression of
Cooperman is presented [14]. Using a different orientation and
origin, Tomitani proposed a somewhat more cumbersome formu-
lation also using the same elliptic sine function [6]; we have veri-
fied that bothmodels give identical numerical results. Note that the
complex electric potential can be conveniently expressed using the
Jacobi elliptic sine function snðu; kÞ. For this, it is recalled that this
function has zeros at u ¼ 2nK and poles at u ¼ ± jK 0 þ 2nK , with K
the complete elliptic integral that depends on k. Therefore the
function logjsnj has positive and negative singularities, as pictured
in Fig. 2.

The similarity between Figs. 1 and 2 suggests a simple corre-
spondence between the complex potential F and the function
log(sn), i.e. between the real potential V and the function logjsnj. In
fact, elliptic functions are fully characterized (up to a constant

multiplicative factor) by their poles and zeros, as well as their pe-
riods, property of complex analysis used in [1 vol 1 x4.3]. A linear
variation is then assumed:

V ¼ �l

2pε0
logjsnða z; kÞj þ V3 (2)

As the zeros of the sn function, i.e. the argument of the loga-
rithm, must correspond to the wires locations, the scale coefficient
a is found from

2a a ¼ 2K (3)

The first image source being associated to u ¼ jK 0, it follows

a b ¼ K 0 (4)

From the ratio b=a one can successively determine the nome,

q ¼ exp
�
�p

K 0

K

�
¼ exp

�
�p

b
a

�
(5)

then, the elliptic integral K, and the modulus m ¼ k2. Boundary
conditions on the grid and the plates are(
V
�
r0e

jq
�
¼ Vg

Vðjb=2Þ ¼ 0
(6)

As a jb=2 ¼ jK �=2, the value indicated in Table A1 yields
snða jb=2; kÞ ¼ jk�1=2; then, using the assumption r0≪a and Eq.
(A.8), one obtains

VCoop ¼ �CCoopVg

2pε0
log
��� ffiffiffikp

snða z; kÞ
��� (7)

where CCoop ¼ l
Vg

¼ 2pε0=log a
Kr0

ffiffi
k

p is the capacitance per unit

length.
Equation (7) is the exact solution of the electrostatic problem for

the symmetric casewith the assumption that wires aremodelled as
lines.

3.2. Symmetric case: expression with sine function

For negligible values of q, Erskine [3] gave the expression

VErskx
bl
4ε0s

� l

2pε0
log
���2 sin

pz
s

��� (8)
Fig. 1. Cross-section of the grid at mid-distance between two parallel plates. Positive
and negative image sources are marked with C and B respectively. The elementary
domain is shaded.

Fig. 2. Plot of logjsn(u, k)j with u ¼ X þ jY and k ¼ 0.01.
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