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a b s t r a c t

Using an integral transform, the mixed boundary value problem of a conducting, elliptical disk on a
dielectric half-space in an electric field is reduced to the solution of an integral equation. An analytical
expression of the electric system capacitance is derived, which is a function of the eccentricity of the
elliptical disk. The electric charge and electric stress distribute non-uniformly over the surface of the
elliptical disk and display local singularities at the edge of the elliptical disk. The square root singularity
of the electric field at the edge of the elliptical disk leads to the divergent of the resultant force on the
elliptical disk, which is physically unrealistic. There likely exist geometrical constraint and/or field
constraint to limit the presence of the square root singularity of the electric field. For any symmetric
conductor in an infinite space that consists of air (vacuum) and a semi-infinite dielectric material with
symmetric plane being in the interface between the air and the dielectric material, the electric potential
in the space is independent of the dielectric constant of the dielectric material.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Progress in micro- and nanofabrication techniques has made it
possible to fabricate surface structures of small scales on various
substrates for applications in flexible electronics and bio-devices.
Microstrip patches of a variety of geometries have been con-
structed as electronic components. There are extensive studies on
the calculation of the capacitance of such patches with the focus on
microstrip lines [1e3], circular patches [4e6] and elliptical patches
[7e9]. Kuester [10] provided explicit approximations for the
capacitance calculation of a microstrip patch of arbitrary shape.

Difficulty in analytically obtaining the electrostatic potential of a
conducting elliptical patch on the surface of a dielectric substrate
has led to the use of numerical methods to calculate the capacitance
of elliptical patches. Boix and Horno [9] pointed out that there is
little work on the capacitance analysis of elliptical patches and the
results given by Sharma and Bhat [11] are dubious. They used
variational techniques in the spectral domain to develop an algo-
rithm for the calculation of a lower bound of the capacitance of a
conducting, elliptical disk embedded in a lossless multilayered
substrate. However, they did not provide an analytical result of the
capacitance for the scenario of the ratio of the layer thickness to the

major axis of the elliptical disk approaching infinity. Boix and
Horno [8] also numerically calculated the modal capacitances and
the gap capacitance of coupled microstrip elliptical disks
embedded in layered media. Alad et al. [12] used the method of
moments with triangular sub-areas to calculate the capacitance of
an isolated elliptical plate and two parallel elliptical plates. It is
worthmentioning that the capacitance of an isolated elliptical plate
in an infinite medium of air (vacuum) was given by Lebedev et al.
[13] and Liang et al. [14] using the ellipsoidal coordinate system and
the Huygens principle, respectively.

It is known that microstrip antennas of circular and rectangular
structures with multiple feeds can provide circular polarization
[15]. However, a slightly elliptical radiator with a simple feed can
also generate circular polarization. It is of practical importance to
derive a closed-form solution of the capacitance of an isolated,
elliptical disk on the surface of a dielectric half-space for better
design of microstrip patches of elliptical shape for MMIC (mono-
lithic microwave integrated-circuit) applications. In this work, the
potential problem of a conducting, elliptical disk on a dielectric
half-space is analyzed. Integral transforms are used to convert the
boundary value problem to a solution of an integral equation.
Analytical expressions of the distribution of electric charge on the
surface of the conducting, elliptical disk and the capacitance are
derived. The singular behavior of electric stress at the edge of the
elliptical disk is discussed.
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2. Formulation of the problem

Consider a conducting, elliptical disk which is placed on the
surface of a semi-infinite dielectric material, as shown in Fig. 1. The
major axis andminor axis coincide with the x-axis and y-axis of the
(x, y, z) coordinate system, respectively, and the origin of the co-
ordinate system is located at the center, O, of the elliptical disk. The
semi-major axis and semi-minor axis of the elliptical disk are a and
b, respectively, and the thickness of the elliptical disk is negligible.
An electric potential of V is applied to the conducting, elliptical disk,
and the bottom surface of the dielectric material is grounded.

The electric potential, 4, in the (x, y, z) coordinate system, sat-
isfies the Laplace equation as

v24

vx2
þ v24

vy2
þ v24

vz2
¼ 0 (1)

Let x ¼ arcosq and y ¼ brcosq. The boundary conditions are

εr
v41
vz

¼ v42
vz

for r>1; at z ¼ 0 (2)

41 ¼ 42 for r>1; at z ¼ 0 (3)

41/0 and 42/0 for jzj/∞ (4)

For r < 1, at z ¼ 0,

41 ¼ 42 ¼ V : (5)

Here, 41 is the electric potential in the dielectric half-space, 42 is
the electric potential in air, and εr is the relative dielectric constant
of the dielectric half-space.

The charge density of the elliptical disk is calculated as

rc ¼ ε0εr
v41
vz

� ε0
v42
vz

; (6)

which gives the total electric charge stored in the elliptical disk as

Q ¼ ∬ Urcdxdy (7)

in which the domain of U represents the area occupied by the
elliptical disk, i.e. U ¼(x, y, 0): x2/a2þy2/b2 < 1.

3. Solutions of electric potential

Using the Fourier transform, the solutions of the electric po-
tentials can be expressed as

41ðx; y; zÞ ¼
1
2p

Z∞
�∞

Z∞
�∞

A1ðx; hÞeiðxxþhyÞþlzdxdh for z<0 (8)

42ðx; y; zÞ ¼
1
2p

Z∞
�∞

Z∞
�∞

A2ðx; hÞeiðxxþhyÞ�lzdxdh for z>0 (9)

with l¼(x2þh2)1/2. Substituting Eqs. (8) and (9) in the boundary
conditions of (3) and (5) yields

A1ðx; hÞ ¼ A2ðx; hÞ≡Aðx; hÞ (10)

The boundary conditions of (2) and (5) then give

1
2p

Z∞
�∞

Z∞
�∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ h2

q
Aðx; hÞeiðxxþhyÞdxdh ¼ 0 for r>1 (11)

1
2p

Z∞
�∞

Z∞
�∞

Aðx;hÞeiðxxþhyÞdxdh ¼ V for r<1 (12)

To derive a closed-form solution of A(x, h), let us define the
function F(x, y), which satisfies the following equation as

1
2p

Z∞
�∞

Z∞
�∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ h2

q
Aðx; hÞeiðxxþhyÞdxdh ¼ Fðx; yÞ for r<1

(13)

From Eqs. (11) and (13), the inverse Fourier transform gives

Aðx; hÞ ¼ 1
2p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ h2

q Z∞
�∞

Z∞
�∞

Fðx; yÞe�iðxxþhyÞdxdy (14)

Substituting Eq. (14) in Eq. (12) yields

Z Z
U

Fðx0; y0Þdx0dy0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q ¼ 2pV for r<1 (15)

Note that the following equation is used in deriving Eq. (15).

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q ¼ 1
2p

Z∞
�∞

Z∞
�∞

e�ixðx�x0Þ�ihðy�y0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ h2

q dxdh (16)

The solution of Eq. (15) is [13].

Fðx; yÞ ¼ V
bKðk0Þ

H
�
1� x2

�
a2 � y2

�
b2

�
�
1� x2

�
a2 � y2

�
b2

�1=2 (17)

with H(�) being the Heaviside unit function. The function K(k0) is
the complete elliptic integral of the first kind as

Kðk0Þ ¼
Zp=2
0

dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k20 sin2 q

q and k0 ¼
�
1� b2

.
a2

�1=2
(18)

Substituting Eq. (17) in Eq. (14), one obtains A(x, h) as

Fig. 1. Schematic of a conducting, elliptical disk on the surface of a dielectric half-
space.
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