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A B S T R A C T

This paper describes a method for the uncertainty-based combination of signal processing techniques for the
identification of rotor imbalance. The main idea of the proposed method is to compute the imbalance with
different algorithms and to average the different algorithms’ results. The method is based on the data fusion at
feature level and uses the measurement uncertainty of the imbalance as a figure of merit for the weight com-
putation. A static, a dynamic, and a hybrid implementation are presented. In the static one, the weights are
computed in a dedicated training phase, in which four algorithms (Fourier transform and quasi-harmonic fitting
of signal denoised with Hilbert-Huang Transform, Hilbert Vibration decomposition, and Wavelet Packet de-
composition) have been used to estimate the known imbalance of car wheels. In the dynamic one, the weights
are computed at runtime by estimating the difference between each predictor and the actual signal. The hybrid
approach is the combination of the two algorithms. Results of simulations and experiments evidenced the va-
lidity of the data fusion, with uncertainty reductions between 10 and 40%, with larger benefits in presence of
non-stationary disturbances.

1. Introduction

In many cases there are different signal processing techniques that
can be used to extract specific features from a signal. The different
information can be combined with the information fusion technique,
which can be implemented at data-level, at feature-level and at deci-
sion-level [1]. The combination of different sensors or features always
allows reaching a better accuracy than that achievable using a single
information [2–6]. Consequently, several literature studies focused on
the combination of different techniques for the identification of para-
meters related with mechanical systems. Niu et al. [7] proposed a faults
diagnosis mechanism using the wavelet analysis and decision-level fu-
sion technique for motors fault diagnosis. In another study [8], Niu
et al. proposed a decision fusion system for fault diagnosis integrating
data sources from different sensors and decisions of multiple classifiers;
the use of multi-agent classifiers as the core of the fault diagnosis
system allowed increasing the accuracy of the fault detection. Bhatta-
charyya et al. [9] suggested the combination of signal processing
techniques for real-time estimation of tool wear in face milling using
cutting force signals. In their work, authors combined three signal-
processing methods with a statistical model. Khazaee et al. designed
and implemented an intelligent system for detecting and classifying
faults of internal combustion engine [10]. Classifiers extracted from

vibration signals were used as inputs of an artificial neural network;
results showed that the combination of separate classifiers increased the
classification accuracy with respect to the single methods adopted.
Yang et al. [11] proposed a noise suppression method for the extraction
of features from vibration signals. In their work authors implemented a
multi-point data fusion for reducing the effect of noise in the analysis of
wind turbine vibration signals; also in this case, results evidenced that
the data fusion allows extracting early weak faults.

At the current state of the art, the data fusion has never been
adopted to increase the accuracy of rotors’ balancing, the procedure in
which the mass distribution of a rotor is measured and, if necessary,
adjusted to ensure given tolerances. The imbalance of a rigid rotor is
usually measured at constant rotation speed using the influence coef-
ficient method [12,13] and corrected on two arbitrary planes [14]
starting from the vibrations V1 and V2 measured at two planes of mo-
tion. The term vibration refers either to the displacement of two com-
pliant constraints or to the reaction forces of rigid constraints [15]. The
advantages provided by data fusion in a simple and traditionally suc-
cessful application such as the balancing may appear limited, since the
influence coefficient method already provides for satisfying results
when the signal to noise ratio is favourable and when the rotor speed is
constant. In presence of measurement noise and mechanical dis-
turbances, however, the influence coefficient method requires many
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averages to obtain reliable results (typically a stable imbalance phase).
Since a reduced balancing time is a key factor in the commercial success
of a balancing machine, we have investigated the possibility of ob-
taining a more reliable imbalance estimation using data fusion techni-
ques. With this approach, the measurement accuracy can be improved
with the same measurement hardware: in a recent study, performances
of four different algorithms for the identification of car wheel im-
balance were compared [16]. The imbalance amplitude and phase were
derived from transient signals using four different numerical methods:
the computed order tracking and Fourier Transform (FT-COT) and the
quasi-harmonic regression on the signal denoised using the Hilbert
Vibration Decomposition (HVD), the Hilbert Huang Transform (HHT)
and the Wavelet Packet Decomposition (WPD). As explained in Ref.
[16], COT-FT is the method traditionally used for the identification of
the wheel imbalance when the signal is asynchronously sampled; the
Fourier transform is computed in the angle domain on the signal re-
sampled using the measurements of a rotational encoder. Given the
limited computational capabilities of the hardware of many machines,
the COT is typically computed supposing a constant or linear velocity
trend and results are therefore biased in presence of nonlinear varia-
tions of the angular velocity. HVD has been used thanks to its efficiency
in decomposing the signal into quasi-harmonic components; the algo-
rithm has been implemented according to the Feldman approach
[17,18] and the first component detected by HVD is the one with the
largest amplitude, which in the case of imbalance is the 1X revolution
component. The imbalance amplitude and phase were estimated fitting
the 1X with a harmonic equation in a least square sense, where the
actual rotation speed is the one measured by the encoder without any
interpolation. The HHT is very similar to the HVD, but the signal de-
composition is based on the so-called intrinsic mode function, in which
the decomposition is performed using the upper and lower envelope of
the signal. Also in this case, the imbalance amplitude and phase were
obtained by fitting the 1X revolution component with a harmonic
equation. The WPD is a decomposition method based on the Wavelet
transform. The decomposition was based on the Daubechies 6 family
and the procedure was iterated to extract the single frequency com-
ponents from the lowest level of the WPD tree. For current purposes, we
have extracted the lowest frequency component from a 7-level WPD
and then extracted the imbalance components using the least square
fitting as in the previous cases.

The main idea behind the use of HVD, HHT and WPD is that, since
their errors are uncorrelated with those of the FT, the combination of
different algorithms provides for a better accuracy with respect to the
use of a single method in presence of disturbances. In ref. [16], per-
formances of the four algorithms were analysed using the Design of
Experiments and results allowed evidencing the accuracy of each
method. Performances of the HHT were penalized by the simplistic
method used for the 1X identification, while performances of HVD,
WPD and FT were comparable; the choice of the best method was not
straightforward.

In this paper, we propose different approaches that can be adopted
to merge the indications of different algorithms using the measurement
uncertainty (evaluated in accordance with the ISO GUM [19]) as a
figure of merit for the identification of the algorithms’ weights. The
approaches are similar to the variance-based weighting for data fusion
[20], but weights are computed by with different expressions derived
from the measurement uncertainty. The proposed method is described
in Section 2. Section 3 describes the specific case of the rotor imbalance
problem. Experimental results are presented in Section 4 and discussed
in Section 5. The paper is eventually concluded in Section 6.

2. Method

If a measure Y (a parameter that can be extracted by a signal X(t), in
this paper the rotor imbalance) can be obtained using M different ap-
proaches, it is possible to compute Y by averaging the different

estimates Yi (being i an index that varies between 1 and M). The ar-
ithmetic average is, in general, a non-optimal choice, given that the
same relevance is given to all the Yi independently on their perfor-
mances [20]. Let us consider the estimation of Y with two quantities Y1

and Y2, each one characterized by a measurement uncertainty U1 and
U2. Y can be obtained as a linear combination of Y1 and Y2 using two
weights α and β.
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For instance, in the case of rotor balancing performed at a variable
rotation speed, the amplitude of the vibration component synchronous
with the rotation (1X) can be estimated from the signal spectrum using
COT-FT (Y1) or in the time domain (Y2, best quasi-harmonic signal
fitting the de-noised experimental data in a least square sense). The
amplitude can be computed with one of the two methods (α or β=0) or
as the average between Y1 and Y2 (α= β=0.5). The best estimation is
the one in which α and β minimize the uncertainty of Y, UY. Under the
hypothesis of non-correlated uncertainties, UY can be computed ac-
cording to the ISO GUM [19] as:
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Given that the sum of coefficient is 1, Eq. (2) becomes
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UY can be minimized setting dUY/dα= 0, obtaining
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The coefficient α minimizing the measurement uncertainty is
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The above expression is equivalent to the variance averaging pro-
posed by Taniguchi and Tresp [20] if the uncertainty is computed with
the ISO GUM type A approach; in this case, the weights are proportional
to the inverse of the variance, exactly as in the variance approach. More
generally, a measurement Y can be expressed as the combination be-
tween n estimations:

∑
⎧

⎨
⎪

⎩⎪

= + + +

=
=

Y α Y α Y α Y

α

...

1

n n

i

n

i

1 1 2 2

1 (6)

An alternative to the use of the variance-based weighting, is given
by the normalization criterion with the weights αi computed as follows:
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Eq. (7) states that, if Y has n uncorrelated estimators Yj, each esti-
mator has a weight that is proportional to the “residual variance”, i.e.
the variance introduced from the other estimators. This approach, as
later explained, is more robust versus mismatches between the training
phase and the actual usage.

2.1. Computation of weighting coefficients

Weighting coefficients αi can be computed with different ap-
proaches, depending on the evaluation of the measurement uncertainty.

(1) If the parameter Y is estimated by a single model, uncertainty can
be estimated at runtime using the measurements repeatability and
the difference between the model prediction and the experimental
data.
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