Accepted Manuscript

A theoretical study of an improved capacitive pressure sensor: Closed-form solution of uniformly loaded annular membranes

Yong-sheng Lian, Jun-yi Sun, Xiao-ming Ge, Zhi-xin Yang, Xiao-ting He, Zhou-lian Zheng

PII: S0263-2241(17)30460-8

DOI: http://dx.doi.org/10.1016/j.measurement.2017.07.025

Reference: MEASUR 4865

To appear in: *Measurement*

Received Date: 1 October 2016 Revised Date: 27 June 2017 Accepted Date: 14 July 2017

Please cite this article as: Y-s. Lian, J-y. Sun, X-m. Ge, Z-x. Yang, X-t. He, Z-l. Zheng, A theoretical study of an improved capacitive pressure sensor: Closed-form solution of uniformly loaded annular membranes, *Measurement* (2017), doi: http://dx.doi.org/10.1016/j.measurement.2017.07.025

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A theoretical study of an improved capacitive pressure sensor:

Closed-form solution of uniformly loaded annular membranes

Yong-sheng Lian¹, Jun-yi Sun^{1,2,*}, Xiao-ming Ge¹, Zhi-xin Yang¹, Xiao-ting He^{1,2}, Zhou-lian, Zheng^{1,2}

¹School of Civil Engineering, Chongqing University, Chongqing 400045, China

²Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China

* Tel: +86-(0)23-65120720; Fax: +86-(0)23-65123511; E-mail: sunjunyi@cqu.edu.cn

Abstract: In this study, the conductive diaphragm in conventional capacitive pressure sensors with dual function (the deformable element and the upper electrode plate of a non-parallel plate capacitor) was modified into a non-conductive elastic annular thin-film (as the deformable element) centrally connected with a conductive rigid circular plate or alternatively with a non-conductive rigid circular plate adhered by a conductive thin-film (as the upper electrode plate of a parallel plate capacitor). This modification brings two advantages: the parallel plate capacitor is more convenient in the accurate calculation of capacitance than a non-parallel plate capacitor; it is easier to select a deformable element with good elastic behavior in non-conductive elastic thin-films than to select such a deformable element in conductive diaphragms. These advantages could provide convenience for further improving the performance of sensors. The presented closed-form solution can meet the needs of the research and development of this improved capacitive pressure sensor.

Keywords: Capacitive pressure sensor; Parallel plate capacitor; Annular membrane; Closed-from solution

1. Introduction

Capacitive sensors are often used in a variety of control, monitoring, diagnosis and other fields [1-3], and they have the advantages of low power consumption, high

Download English Version:

https://daneshyari.com/en/article/5006352

Download Persian Version:

https://daneshyari.com/article/5006352

<u>Daneshyari.com</u>