Accepted Manuscript

Quantification of Concrete Railway Sleeper Bending Moments Using Surface Strain Gauges

J. Riley Edwards, Zhengboyang Gao, Henry E. Wolf, Marcus S. Dersch, Yu Qian

PII: S0263-2241(17)30457-8

DOI: http://dx.doi.org/10.1016/j.measurement.2017.07.029

Reference: MEASUR 4869

To appear in: *Measurement*

Received Date: 1 May 2017 Revised Date: 23 June 2017 Accepted Date: 13 July 2017

Please cite this article as: J. Riley Edwards, Z. Gao, H.E. Wolf, M.S. Dersch, Y. Qian, Quantification of Concrete Railway Sleeper Bending Moments Using Surface Strain Gauges, *Measurement* (2017), doi: http://dx.doi.org/10.1016/j.measurement.2017.07.029

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Quantification of Concrete Railway Sleeper Bending Moments Using Surface Strain Gauges

Revised Manuscript for **Measurement**The Journal of the International Measurement Confederation (IMEKO)

23 June 2017

J. Riley Edwards^{1,2}, Zhengboyang Gao², Henry E. Wolf³, Marcus S. Dersch², and Yu Qian²

Rail Transportation and Engineering Center – RailTEC ²
Department of Civil and Environmental Engineering
University of Illinois at Urbana-Champaign
1243 Newmark Civil Engineering Laboratory, MC-250
205 N. Mathews Ave., Urbana, IL 61801

FIGG Bridge Group ³
Western Regional Office
9635 Maroon Circle, Suite 125
Englewood, CO 80112

J. Riley Edwards, P.E. (217) 244-7417 jedward2@illinois.edu Zhengboyang Gao (217) 979-1649 zgao9@illinois.edu Henry E. Wolf (217) 369-2683 hwolf@figgbridge.com

Marcus S. Dersch, P.E. (217) 333-6232 mdersch2@illinois.edu Yu Qian, Ph.D. (217) 300-2131 yuqian1@illinois.edu

ABSTRACT

As the use of concrete sleepers increases for heavy-haul freight railroad and rail transit applications in North America, it is becoming more critical to quantify their flexural performance under revenue service traffic in an effort to improve sleeper design and maintenance practices. The objective of improving sleeper design and performance is achieving longer service lives, lower life cycle costs, and fewer inservice failures. Presently, center cracking is one of the most common factors limiting the service life of concrete sleepers in North America, and rail seat cracking has also been documented as a performance concern. Improving the understanding of sleeper flexure can help reduce the occurrences of cracked sleepers by ensuring designs are adequate for the field conditions that are encountered. Additionally, previous laboratory research conducted at the University of Illinois at Urbana-Champaign (UIUC) found that sleeper flexure magnitude is highly dependent on support conditions. To date, few methods have been proposed to accurately quantify the in-service field bending moments of concrete sleepers and their variability due to support conditions and other factors. A method using concrete surface strain gauges has been developed, deployed, and validated by UIUC for quantification of sleeper bending moments. This method has been successfully deployed in the laboratory and in seven field locations, providing flexural demand data that can be used for the design of concrete sleepers. This paper will present the aforementioned instrumentation methodology and results from one field installation in which surface strain gauges were installed on ten concrete sleepers on a high-tonnage, heavy-haul freight railroad with the objective of quantifying sleeper-to-sleeper bending moment variability.

KEYWORDS

¹ Corresponding author

Download English Version:

https://daneshyari.com/en/article/5006363

Download Persian Version:

https://daneshyari.com/article/5006363

Daneshyari.com