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a b s t r a c t

Under a project undertaken at NASA’s Stennis Space Center, an integrated framework has been developed
for intelligent monitoring of smart elements. Integrated Systems Health Monitoring is an implementation
of a monitoring system which is robust, user friendly, and adaptable. This paper focuses on smart sensors,
and shows the advantage of utilizing an enhanced version of a previously developed intelligent system,
DATA-SIMLAMT, called Enhanced DATA-SIMLAMT or EDATA-SIMLAMT. This new version contains addi-
tional properties and states for improved data interpretation. The additional properties are based on
wavelets. The major advantage provided by adding wavelet analysis is the ability to detect sudden tran-
sitions as well as obtaining the frequency content using a much smaller data set then that required by the
traditional Fourier transform method. Historically, sudden transitions could only be detected by a visual
method or by offline analysis of the data. EDATA-SIMLAMT provides an opportunity to automatically
detect sudden transitions as well as many additional data anomalies, and provide improved data-
correction and sensor health diagnostic abilities. The newly developed system has been tested on actual
rocket test data from NASA’s Stennis Space Center.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Integrated System Health Monitoring (ISHM) has now perme-
ated its way into many civil, mechanical and aerospace struc-
tures/systems. Current interests in smart sensor networks that
are reliable and robust have resulted in the development of numer-
ous ISHM systems. Hence the need for intelligent sensors as a crit-
ical component for ISHM is well recognized by now. The purpose of
such a system is to detect and measure certain parameters, and to
use the information and knowledge obtained from the measured
data, and any prior knowledge, to make intelligent, forward-
looking decisions and initiate actions. Even the definition of what
constitutes an intelligent sensor (or smart sensor) is well docu-
mented and stems from an intuitive desire to get the best quality
measurement data that forms the basis of any complex health
monitoring and/or management system. If the sensors (i.e. the ele-
ments closest to the measurand) are unreliable then the entire sys-
tem works with a tremendous handicap. Hence, there is a desire to
distribute intelligence down to the sensor level, and give a sensor

the ability to assess its own health thereby improving the confi-
dence in the quality of the data at all times.

Intelligent sensors started their history as new concepts in aca-
demia [10,26,18], but then parallel work in industry where sensors
were developed with built in expert systems and look-up tables
[2,33] moved them to real applications. The autonomous sensor
was defined as a sensor that has an expert system with extensive
qualitative tools that allow it to evolve with time into a better
and more efficient system [8]. It differs from the above mentioned
models by having a dynamic knowledge base as well as embedded
qualitative and analytical functions that give it a higher degree of
operational independence, self-sufficiency and robustness. The
underlying philosophy behind the autonomous sensor is closest
to Henderson’s [11,12] logical sensor models that also endeavor
to give more problem-solving capabilities to the sensor, but
exclude any type of dynamic models. DeCoste [7] describes a sys-
tem, called DATMI, which dynamically maintains a concise repre-
sentation of the space of local and global interpretations across
time that are consistent with the observations. Each of the observa-
tions are obtained from a sensor, therefore the number of observa-
tion are equal to the number of sensors in the system. Accuracy and
validity of the observations are obtained by cross-referencing with
possible and impossible states of the system. DATMI is designed for
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a complete control system comprising of multiple sensors and
actuators, and is the basis for the formalized theory called DATA-
SIMLAMT (Dynamic Across Time Autonomous – Sensing, Interpreta-
tion, Model Learning and Maintenance Theory) which is designed
for and is applicable to each sensor in the control system [19].

The main challenge lies in the development of a standard for-
mat for intelligent sensors such that they can provide the measure-
ment as well as the measurement quality for all types of sensors.
Significant work has been done by the SEVA Research Group at
Oxford in such standardization efforts [13]. Regular updates have
shown considerable progress in the development of multiple sen-
sor validity parameters that are independent of the type of sensor
and set the stage for future standardization efforts [14]. Henry [15]
showed the need for a 2-way communication for modern digital
sensors that serve complex control systems. Schmalzel et al. [30]
describe an architecture for intelligent systems based on the smart
sensor communication standards such as IEEE 1451.X and lays the
foundation for intelligent sensors that are truly standardized [20].

The key requirements of an advanced health monitoring system
are that it should be able to detect damaging events, characterize
the nature, extent and seriousness of the damage, and respond
intelligently on whatever timescale is required, either to mitigate
the effects of the damage or to effect its repair. These requirements
have been discussed in some detail in earlier reports by Abbott [1].
According to Price et al. [28] a pure monitoring system is expected
only to report damage rather than to formulate a response, but it is
preferable that the ultimate objective of responding to damage be
borne in mind from the outset. The statement of key requirements
serves to sub-divide the problem as follows: detection of damaging
events, characterization of the damage, prioritization of the seri-
ousness of the damage, identification of the cause of the damage,
formulation of the response and execution of the response. it can
also be seen that there is a large demand for ISHM [25,31,5,9,24]
with application in various fields like monitoring structural health,
nuclear power, ship harbors, furnaces, turbine engines, thermal
plants, etc.

The greatest limitation of most qualitative methods to analyze
and interpret sensor outputs has been during sudden transitions
in the signal. Traditional tools such as the Fourier transform e.g.
FFT) cannot resolve sudden transitions well enough in the time
and frequency domain. The reason is that the FFT describes a signal
through an infinite sum of sinusoids of varying frequencies that
extend over all time. One can try windowing the FFT, thus finding
the frequencies during certain time windows; however, the time
resolution is not great enough to find the specific time at which
the sudden transition occurs. This paper focuses on the use of
the discrete wavelet transform DWT) [6,21] to isolate features.
The DWT has been used recently for many applications including
image compression [32], pattern recognition [3], speech processing
[16], signal detection [17] and model estimation [4].

The current version of DATA-SIMLAMT was refined using data
provided by NASA’s Stennis Space Center (SSC) acquired from
rocket engine tests. The ‘‘enhanced” version of DATA-SIMLAMT,
EDATA-SIMLAMT, includes two states added to the existing eight
states. EDATA-SIMLAMT utilizes wavelet decomposition in order
to detect sudden transitions in the test data. It also provides a reli-
able data fixing algorithm that utilizes a least mean squared algo-
rithm. The performance of the algorithm is shown by evaluating
the condition of sensor data acquired from rocket engine tests
completed at NASA SSC.

2. Intelligent sensor phylosophy

This section provides an understanding of DATA-SIMLAMT
(Dynamic Across Time Autonomous - Sensing, Interpretation, Model

Learning and Maintenance Theory) [19] which is a theory that was
developed for intelligent sensing systems. Its main building blocks
are:

Property – is a parameter that has different state values based
on the sensor performance, e.g. an amplitude check that monitors
the amplitude of the current data point compared to the past few
readings. It could have state values of (N)ormal or (H)igh signifying
normal state of affairs or a potential problem.

Concept – is a set of properties with same state values, e.g.
amplitude is (H)igh for a certain duration of time.

Behavior – is a set of concepts, e.g. a normal operation followed
by duration of very high amplitude may signify a problem such as a
spike.

Envisionment – is a known, hence pre-defined, concept/behav-
ior similar to a known pattern in the pattern recognition problem,
and is stored in the sensor’s knowledge bases.

Numerous properties with their state values (at any given time)
constitute a concept. A concept is defined as a period in time in
which the properties have the same state values. A concept, as sta-
ted earlier, is defined by the eight properties and their unique state
values. Two or more concepts, in a definite order, constitute a
behavior, as shown in Fig. 1, and can be envisioned to be a pattern.

The symbolic table is a snapshot of the output of a sensor. The
numeric sensor data is converted to the symbolic data set in real
time and pattern recognition is then done. The lightly shaded seg-
ment has been identified as Previous_Noise(Low) concept and the
heavily shaded portion has been identified as Amplitude(High)
concept. Together, in that order, the behavior of Spike (Present)
has been identified that would cause the sensor to take appropriate
action. In this case, it could be to send a predicted value to the main
controller rather than the actual data which is probably faulty.
Such sensor output interpretation is the part of a larger system that
has numerous behaviors coded in as well as has the ability to learn
new ones.

The governing Integrated System Health Monitoring (ISHM)
vision for an entire process needs to be in an environment con-
ducive for embedded intelligence and decision making. Such an
overall system for the rocket test stand has been designed at Sten-
nis Space Center, using the G2 environment from Gensym, Inc.1 G2
software offers the opportunity to develop layered behaviors analo-
gous to hierarchical autonomous architecture. This work is focused
solely on the single sensor level. The central system collects the data
from the sensors and external programs; then applies it to the model
for the system contained in its knowledgebase.

The intelligent sensor spoken of in this paper is foreseen to be a
major component in the ISHM vision. An intelligent sensor is antic-
ipated to provide additional information than that of a traditional
sensor. The information provided by an intelligent sensor can
include actual data, corrected data, validity of the data, health of
the sensor, etc. (see Fig. 2).

The intelligent sensor embodiment shown in Fig. 2 provides a
possible scenario where the input data from a physical sensor is
analyzed by various routines. The outputs of the routines provide
information which forms a basis for a structured output from the
intelligent sensor. The output from the sensor could consist of
the raw data, actual or corrected, and health information about
the data and the sensor itself. This health information could be in
the form of a Condition Assessment Sheet (CAS) which shows a
confidence factor level of the data.

The intelligent sensor is developed in two forms: Physical Intel-
ligent Sensor (PIS) and Virtual Intelligent Sensor (VIS). A PIS is an
actual sensor with an embedded microprocessor, while a VIS is a
software based sensor that functions as a PIS where it is impossible

1 [Online]. Gensym, Inc. Burlington, MA. Available: http://www.gensym.com.
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