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a b s t r a c t

Micro-structured components have been widely used in modern opto-electronics systems, but effective
characterization methods for structured surfaces are still of lack. Reliable filtering is required to separate
the salient structural features and micro-textures, so that the characteristic parameters of the geometri-
cal features can be obtained accurately. Conventional filtering methods cannot preserve sharp features
very well. In this paper, a feature-preserving filtering method is proposed using the combined sparse reg-
ularizers. In addition to the fidelity term, two regularization terms involving the first order and second
order derivatives respectively are taken in the optimization objective function, so that the filtered data
can be divided into a piecewise constant part and a piecewise smooth part. Taking the advantage of spar-
sity of ‘p-norm (0 < p < 1), the regularized filtering method can achieve good balance between feature
preserving and noise removal. An iterative reweighted algorithm is used to solve the complex objective
function. Numerical experiments and comparisons are presented to show that the proposed method is
capable of preserving features like sharp edges and corners and suitable for a wide variety of surface
shapes.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Micro-structured components contain micro-structured fea-
tures, typical examples of which are MEMS, micro-lens arrays,
gratings, etc. [1,2]. Due to the special opto-electro-mechanical
characteristics, micro-structured components have been wildly
used in different areas such as photoelectric imaging, optical fiber
communication, laser technology, automotive and defense [3].
Because the surface topographies of micro-structured components,
especially the qualities of geometric features, directly determine
their performance, it is necessary to analyze and characterize the
micro-structured features. The existing surface characterization
methods are mainly based on the Fourier transform, and topogra-
phy components are classified according to their Fourier frequen-
cies, such as form, waviness and roughness. Globally defined
statistic parameters such as the arithmetic average value and
root-mean-square value are employed to measure the surface
qualities [4]. However, these parameters do not reflect the local
geometric features of micro-structured surfaces and cannot be
related to actual manufacturing process conditions. As a result,

these methods are not suited for characterizing micro-structured
surfaces.

To assess the surface qualities of micro-structured surfaces,
local geometric features have to be segmented. Differential meth-
ods, such as the Sobel, Roberts and Laplacian operators [5–7], are
commonly used. Yet considering the tool marks, vibration and
material defects generated in the process of manufacture, the
actual surfaces contain irregular micro textures, which are sensi-
tive to the differential operators and prone to the failure of seg-
mentation. To handle this problem, the data should be filtered
before segmentation, as shown in Fig. 1. However, most of the fil-
tering methods behave well for static stochastic surfaces only.
Once applied to micro-structured surfaces, the halo effect and dis-
tortion will occur at the sharp corners. As a consequence, the capa-
bility of feature-preserving is required for the filtering methods
applied to micro-structured surfaces.

In this paper, a new feature-preserving filtering method is pro-
posed. By using an optimization function with combined sparse
regularizers, the underlying structures are assumed to be com-
posed of a piecewise constant part and a piecewise smooth part.
The rest of the paper is organized as follows. In Section 2, some
related filtering methods are reviewed. Section 3 introduces the
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proposed method in detail. Experiments and discussion are pre-
sented in Section 4. Finally, the paper is summarized in Section 5.

2. Related work

The most widely used filtering method is the Gaussian filter [8],
which uses a Gaussian kernel for mathematical convolution. Using
the Gaussian weighted average of the pixels in a fixed window, the
underlying smooth profile can be estimated. This method is simple
to implement, but sharp features will be blurred. Bilateral filter [9]
makes an improvement by adding a weight in the Gaussian kernel
to measure the height difference between data points. The filtered
results are less influenced by the neighbourhood points compared
to the Gaussian filter, therefore bilateral filter has better capability
of feature preserving. The nonlocal means filter [10] uses a similar
weight on measured heights. Differently, the weight is measured
patch-wisely. The drawback of this method is its high computa-
tional complexity. Xiong and Ding [11] gave a universal denoising
paradigm for the weighted average filtering methods from the per-
spective of signal’s attribute analysis. Though this method can be
extended to include any attribute, it is still a laboursome task to
identify and quantify the features of interest.

Another class of filtering methods are the energy optimization-
based methods. Usually there are two terms in the function: the
fidelity term and the regularization term. The former puts similar-
ity constraints on the estimated data and the latter gives a sparse
regularization to preserve important features. The Rudin-Osher-
Fatemi (ROF) model [12], also called the total variation (TV)
method, is one of the most classic methods. To remove the noise,
it forces the data gradient to be sparse using the ‘1-norm regular-
ization term. Based on this model, a variety of methods with differ-
ent fidelities or regularizers are proposed. Chan and Esedoglu [13]
used a ‘1-norm fidelity term for image denoising, and interesting
new applications like multiscale image decomposition are sug-
gested. A sparser ‘0-norm regularization term is studied in
[14,15] for image smoothing. Although these TV-based models
can preserve sharp edges, some limitations still restrict their per-
formance. For example, smooth transition regions are always
rough due to the stair effect. To overcome this drawback, a regular-
ization term containing high-ordered derivatives is adopted. Chan
et al. [16] added a nonlinear second order term to the TV func-
tional. The acquired performance is better except for its slow con-
vergence rate. Lysaker et al. [17] created the Lysaker-Lundervold-
Tai model, which replaces the first ordered derivatives with second

ordered derivatives in the regularization term. Although this
makes the function more difficult to solve, it preserves smooth
regions much better than ROF. Other methods using the ‘2 norm
regularization can also have a smoothing effect, but edges may
be blurred. Chen et al. [18] proposed an adaptive denoising
method. Using the curvature as a criterion to identify sharp edges,
the regularization is approximated with either a TV norm or a ‘2
norm when necessary. But the criterion may lose effectiveness
when the noise is large.

Considering that most of the existing methods work well only
within a limited range, and cannot be applied to complex struc-
tures. Some specially designed methods are effective, but they
are complicated and time-consuming. The method proposed here
exerts the idea of decomposing signals into subcomponents on
data filtering [19–21]. By simply optimizing an objective function
with combined sparse regularizers, important features can be pre-
served well with noise removed successfully.

3. Optimization method with combined sparse regularizers

3.1. The optimization function

Assume that the underlying data for a micro-structured surface
can be divided into two parts, a piecewise constant (PC) compo-
nent and a piecewise smooth (PS) component. Here an optimiza-
tion objective function is defined as follows:

min
u01 ;u02

ku1 � u01 � u02k22 þ ckru01kp1p1 þ lkr2u02kp2p2 ð1Þ

where u1 is the measured data. u01 and u02 are the PC and PS com-
ponents, respectively. c and l are non-negative parameters to bal-
ance the three terms. p1 and p2 are real norms between 0 and 1. r
and r2 are the first-order and second-order differentiation opera-
tors. ru01 is defined as

ðru01Þi;j ¼ ðDþx u01;D
þ
y u01ÞT

and r2u02 is defined as

ðr2u02Þi;j ¼ ðD�x ðDþx u02Þi;j;Dþx ðDþy u02Þi;j;D
�
y ðD�x u02Þi;j;D�y ðDþy u02Þi;jÞ

T

Symbols such as Dþx , D
�
x , D

þ
y and D�y are differentiation operators

and we refer the readers to [22,23] for more details.
The objective function consists of three terms. The first term is

the fidelity term to ensure the estimated data not far away from
measured one. The second and third terms are regularizers to con-
trol the smoothness of the filtered surface. To reconstruct a PC
component, kru01kp1p1 is adopted. A smaller kru01kp1p1 forces the gra-
dient of u01 to be sparse, an ideal situation of which is that most of
the gradients of u01 are zero and non-zero gradients only remain at
actual steps. This is exactly the definition of PC. Similarly, a smaller
regularizer kr2u02kp2p2 forces the change in gradient, namely curva-
ture, of u02 to be sparse, where most of the curvatures of u02 are
zero and non-zero curvatures only remain at actual edges. This
term can give a better approximation for the PS component. The
combination of u01 and u02 is constrained by the first term to
reconstruct the underlying micro-structured surface. Once the
minimum of the objective function is achieved, detailed textures
can be removed and features are preserved. Here the ‘p-norm with
0 < p < 1 is used in the two regularizers, considering its excellent
sparsity [24]. It is very suitable for feature-preserving filtering,
where the main features are always sparse. But it is also a non-
convex problem and difficult to be solved. We use the iterative
reweighted algorithm to solve this problem.

Fig. 1. The characterization of micro-structured surface.
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