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a b s t r a c t

Despite its importance, uncertainty of measurements and parameters is frequently
neglected by practitioners in the design of systems even in safety critical applications.
Thus, problems arising from uncertainty may only be identified late in the design process
or even remain. This can lead to additional costs and increased risks. Although there exists
numerous tools to support uncertainty calculation, reasons for limited usage in early
design phases may be low awareness of the existence of the tools and insufficient training
in the practical application.
In order to enhance the widespread use of such tool support we suggest a teaching con-

cept for uncertainty calculation in measurement science education that is directly based on
the utilization of software tools. Although the developed material is currently based on the
GUM (Guide to the expression of uncertainty in measurement) method we believe that it is
also useful with other methods. Additionally, the concept goes beyond the scope of mea-
surement uncertainty quantification demonstrating that it is also useful for system analysis
and optimization.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

The fact that measurement results are more than just
numeric values is well known and accepted when it comes
to physicals units. Thus, it is common practice to report the
unit together with the numeric result of a measurement.
However, it is not as common to emphasize that measure-
ment results are usually composed by realizations of ran-
dom variables. The ideal way to represent random
variables is to provide the probability distribution. How-
ever, this may be difficult, impractical or even impossible
in many situations. As an alternative, the uncertainty
attributed to the measurement result may be reported in
terms of certain parameters of the probability density

function. In the simplest case we could just report a single
additional parameter to indicate if the distribution is nar-
row or wide; i.e. a non-negative parameter characterizing
the dispersion of the quantity values being attributed to
a measurand, based on the information used [1]. In other
words, it provides information about the remaining uncer-
tainty about the measurand [2]. The idea to develop a new
guide for the treatment of uncertainty in measurement
was to overcome some of the limitations that are associ-
ated with the previously used term error [3] and led to
the change in the treatment of measurement uncertainty
from an Error Approach (sometimes called Traditional
Approach or True Value Approach) to an Uncertainty
Approach [1]. With respect to metrology, the uncertainty
reflects the fact that measurements can only provide
incomplete knowledge and that a measurement is only
useful when the lack of knowledge is somehow quantified.
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This is particularly true with respect to safety and reliabil-
ity. Consider, for example, a monitoring system that should
validate that a certain parameter lies within a certain
interval. If the measurement uncertainty of the monitoring
system becomes larger than the interval to be monitored,
then the monitoring system can never be used to validate
that the parameter is actually within the interval; it can
only be used to validate that the parameter (with high
probability) resides outside of the interval. This may not
be apparent for a user or even for a developer of such a sys-
tem, in particular considering that the engineer may not be
an expert in stochastics and uncertainty quantification.
Therefore, it seems to be reasonable to provide a method
that is commonly accepted by practitioners and experts,
can easily be applied for a wide range of problems and still
provides good results (even if they may not be optimal in a
theoretical sense).

In 1977, as it was recognized the existence of a lack of
international consensus on the expression of uncertainty
in measurement, the world’s highest authority in metrol-
ogy, the Comité International des Poids et Mesures (CIPM),
requested the Bureau International des Poids et Mesures
(BIPM) to address the problem in conjunction with the
national standards laboratories and to make a recommen-
dation. The effort finally led to the development of the
Guide to the Expression of Uncertainty in Measurement
(GUM) [3]. According to the GUM, the ideal method should
be universal (applicable to all kinds of measurements and
to all types of input data used in measurements), internally
consistent (directly derivable from the components that
contribute to it), and transferable (possibility to directly
use the uncertainty evaluated for one result as a compo-
nent in evaluating the uncertainty of another measure-
ment in which the first result is used).

With respect to one of the initial requirements for such
a recommendation – i.e. the approach has to be universal –
the GUM [3] treats all uncertainty contributions identi-
cally, more or less as if the distributions were Gaussian
and the relations were linear. The Central Limit Theorem is
significant in this context because it shows the very impor-
tant role played by the variances of the input quantities’
probability distributions, compared with that played by
the higher moments of the distributions, in determining
the form of the resulting convolved distribution of Y. Fur-
ther, it implies that the convolved distribution converges
towards the normal distribution even for comparatively
small numbers of contributing parameters. For instance,
the convolution of as few as three rectangular distributions
of equal width is approximately normal [3].

However, the GUMworking group was aware that there
are limitations of the GUM [3] method and in supplements
[3–5] suggested to use Monte Carlo sampling in certain
cases. A recent survey [6] on current research activities in
the field of measurement uncertainty reports that most
recent work addresses the GUM. Consequently, the present
paper focuses on this approach, which has a wide accep-
tance within the field of metrology. Simplicity of tools that
implement the method is also crucial for the acceptance, as
stated e.g. in [7]. Similarly, the authors of [8] emphasize
the beneficial role that tools may play to eventually make
uncertainty propagation an inherent component of

computational procedures instead of an optional adden-
dum. With the same motivation, we aim to bring students
in touch with such tools early in their curriculum.

Our approach uses a tool that integrates well into a
mathematical programming environment with which our
students are familiar. We currently use Matlab, but the
approach may also be used with other environments, e.g.
[9] for students well trained in Java. The basic educational
concept was presented in [10]. In the present paper, we
discuss additional aspects such as the numeric representa-
tion of uncertainty and the utilization of the concept
beyond the scope of classical measurement uncertainty
quantification.

Our educational concept is directly applicable to two
toolboxes for Matlab [11]; i.e. Metas.UncLib MatLab tool-
box [12] and a toolbox developed by our group. Both tool-
boxes include an implementation of the GUM tree method
[13]/automatic differentiation [14]. The toolboxes are sim-
ilar in basic usage and basic functionality. Differences
mainly relate to reporting of uncertainty and analysis of
uncertainty contributions (in part as a response on student
feedbacks). Furthermore, to keep things transparent for the
students they can have a look into the MatLab source code
rather than obtaining a ‘‘black box”.

It should be noted that there have been many discus-
sions about the GUM and several alternative approaches
exist as discussed e.g. in [15,16] and recently in [17]. Addi-
tionally, a revision of the GUM [18,19] is in preparation.
However, the teaching concept that we present in this
paper can be used with different approaches as long as it
is possible to implement them in an automatic tool. In this
context it will be important to outline the methods and
explain their advantages and disadvantages to the stu-
dents. However, the main objective is to sensitize students
for the concept of uncertainty such that it becomes a part
of practices of daily life. This can be achieved with different
approaches and we currently use the classical GUM
approach.

2. Software tool concept

2.1. Assigning and reporting uncertainty

In principle, the GUM [3] has two different types of
uncertainty evaluation. The Type A evaluation uses statis-
tical methods, i.e. the uncertainties are obtained from
experiments by drawing samples from the distribution
and calculate the standard uncertainty based on the empir-
ical data. In the Type B evaluation, the uncertainty of input
quantities is known a priori. In order to obtain the com-
bined standard uncertainty attributed to the final mea-
surement result it is necessary to determine the
individual contributions of the input quantities.

In this paper, we focus on the determination of the com-
bined standard uncertainty based on the standard uncer-
tainty of the input quantities. Our examples are based on
Type B uncertainties, which represents a common case
where the prior knowledge is provided by the manufac-
tures of the devices, e.g. instrumental measurement uncer-
tainty for voltmeters or sensors in the respective
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