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a b s t r a c t

A non-recursive version of Nonlinear Least Squares Fitting for frequency estimation is presented. This
problem yields a closed-form solution exploiting a Taylor’s series expansion. Respecting some conditions,
the computational complexity is reduced, but equally the method assures that the accuracy reaches the
Cramer-Rao Bound. The proposed method requires a frequency pre-estimate. A series of simulations has
been made to determine how accurate the pre-estimate should be in order to ensure the achievement of
the Cramer-Rao Bound in various conditions for different periodic signals. The execution time of the pro-
posed algorithm is smaller compared to a single iteration cycle of the standard approach. The proposed
method is useful in applications that require a high accuracy fitting of periodic signals, especially when
limited computational resources are available or a real-time evaluation is needed.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The fitting of a sampled data record of a periodic signal is an
important problem typical of many applications. The most studied
approaches are based on least squares fitting. In literature two least
squares approaches can be found. One is based on a single sinusoid
model (sine fitting), the other uses a multi-harmonic model (multi-
harmonic fitting). When the recorded periodic signal is not a pure
tone, the sine fitting produces a biased estimate due to the presence
of harmonics [1]. If the fundamental frequency is known, the least-
square procedure can be solved as linear system; in this case, stable
and efficientmethods are available [2]. On the other hand, if the fre-
quency is unknown, the problem has not a closed-form solution. In
this case, one needs to use an optimization algorithm in order to
iteratively search the solution [2]. The statistical properties of these
methods are largely discussed in literature [1–4].

This paper is focused on the fitting of periodic signals with
unknown frequency. In literature, two main approaches are
proposed.

The first is based on the transformation of the nonlinear least-
squares estimation into a recursive linear least-squares procedure.
For each iteration, this method solves a linear system using the fre-
quency value resulting from the previous iteration. The solution of
the linear system provides each step the estimate of the harmonics
level and a new adjusted frequency. The process runs until a min-

imum threshold of the mean square error (MSE) is reached. This
method is proposed and standardized in the IEEE Standard 1057
[5]. Many methods have been introduced either to reduce the com-
putational demand required to solve the linear system [2,6,7], or to
optimize the multidimensional searching [8–11].

The growing demand of portable instrumentation has increased
the interest in the efficient implementation of this class of algo-
rithms[12]. In [13,14] methods to reduce the computational load
and the memory demand of this least-squares estimators have
been proposed.

The second general approach is based on the separation of the
nonlinear and linear problems [2,15,16]. The solution of the former
provides the frequency estimate which allows to find the other
parameters simply solving a linear system.

Focusing on the nonlinear problem, it is possible to write an
expression for the frequency estimate depending only on the fre-
quency using the projection matrix. The frequency estimate can
be then obtained through the maximization of this expression. This
approach requires a one-dimensional iterative search. This method
is called Nonlinear Least Squares (NLS) [2]. Moreover, the maxi-
mization process is nontrivial, and as such, represents a limit for
the applicability of NLS.

In this work, the NLS method is studied with the aim to propose
a non-recursive Nonlinear Least Squares (nrNLS), to overcome the
above difficulty. The proposed nrNLS approximates the NLS func-
tion providing a frequency estimate in a closed-form, thus avoiding
the recursion. Great attention has been paid to the determination
of the conditions that assure an estimate accuracy near to the
Cramer-Rao Bound (CRB).
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It is important to remark that there are a wide range of fre-
quency estimators that can be used as an alternative to NLS [17],
based on the interpolation of the peak of the Discrete Fourier
Transform (ipDFT), on the periodogram maximization, or zero
crossing [18,19]. These methods have the advantage of being faster
than NLS. However, when only few cycles of the observed signals
are available, they cannot ensure high accuracy. In these cases, it
is often necessary to use methods based on least squares [15], as
the NLS.

The core of the proposed method is based on the development
of the derivative of the NLS function in Taylor’s series around a pre-
estimate, in order to reduce the frequency estimation problem to a
calculation of polynomial roots.

In previous works [20,21], a non-recursive technique for the
estimation of the grid frequency based on a similar approach has
been proposed. In this work, a more general approach is presented.
The new algorithm does not require any filtering, in contrast with
[21]. Moreover, the newmatricial formulation improves the usabil-
ity of the algorithm for hardware implementation in different
fields of application.

In Section 2 the classical NLS approach is shortly presented,
while in Section 3 the proposed nrNLS is derived. The cases of sin-
gle tone and the multi-harmonic models are separately treated. In
Section 4, some results are showed with the aim to evaluate the
performances of the proposed method and to understand its valid-
ity limit. In Section 5 an example of application of the presented
algorithm to the grid voltage analysis is showed.

2. Nonlinear Least Squares (NLS) fitting

The accurate estimation of the frequency and the harmonic con-
tent of a sampled periodic signal can be performed using the multi-
harmonic least squares fitting procedure. This approach is a para-
metric method that produces an asymptotically unbiased estimate
of the parameters [2]. Moreover, especially when the data record
covers only few cycles or a portion of cycle of the signal under
analysis, NLS overcomes the well-known problems afflicting the
approaches based on the Periodogram maximization or on the Dis-
crete Fourier Transform (DFT) [15].

The generic least squares fitting procedure is based on the min-
imization of the sum of the squares of the residuals shown in (1).

XN
n¼0

ðyn �Mn½#�Þ2 ð1Þ

The residuals are defined as the differences between the mea-
sured data and the values assumed by a specific parametric model
at the same instants. In (1), yn = [y0y1y2 . . . yN� is the vector contain-
ing the samples of the measured signal taken at instants
tn = ½t1t2 . . . tN� and Mn½#� is the vector containing the values that
the adopted model (depending on the parameters #) assumes at
instants tn ¼ ½t1t2 . . . tN�.

In case of multi-harmonic model, Mn½#� is defined as in (2).

Mn½#� ¼ C þ
XH
h¼1

ðahcosðhxtnÞ þ bhsinðhxtnÞÞ ð2Þ

If H harmonics are included in the model, the number of param-
eters to estimate are 2H + 2 and listed in the parameters vector #:

# ¼ ½a1b1a2b2 . . . aHbHCx� ð3Þ
The frequency x makes the problem nonlinear. This is the rea-

son why a closed-form solution of this least-square fitting does not
exist. The problem can be split in two stages. In the first one, the
estimate x̂ can be obtained by a 1-D searching, maximizing the
expression shown in (4):

x̂ ¼ maxx½yTDðxÞðDðxÞTDðxÞÞ�1
DðxÞTy� ð4Þ

where the observation matrix DðxÞ is a N� ð2Hþ 1Þmatrix defined
as in (5).

DðxÞ¼

cosðxt1Þ sinðxt1Þ cosð2xt1Þ sinð2xt1Þ . . . cosðHxt1Þ sinðHxt1Þ 1
cosðxt2Þ sinðxt2Þ cosð2xt2Þ sinð2xt2Þ . . . cosðHxt2Þ sinðHxt2Þ 1

..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
.

cosðxtNÞ sinðxtNÞ cosð2xtNÞ sinð2xtNÞ . . . cosðHxtNÞ sinðHxtNÞ 1

266664
377775
ð5Þ

This kind of approach is called Nonlinear Least Squares (NLS).
The second one consists in the solution of the trivial linear

system:

ĥ ¼ ðDðx̂ÞTDðx̂ÞÞ�1
Dðx̂ÞTy ð6Þ

using x̂ found in the first stage. The vector ĥ ¼ ½â1b̂1â2b̂2 . . . âHb̂H
bC �

contains the estimates of all other parameters except x.

3. The proposed method

In this section the proposed method of frequency estimation
concerning the first stage of the periodic signal fitting is intro-
duced. It uses an approximation of the NLS approach to estimate
the frequency xa of a noisy periodic signal. The function to maxi-
mize JðxÞ, which depends only on the variablex, can be written as

JðxÞ ¼ yTDðxÞðDðxÞTDðxÞÞ�1
DðxÞTy ð7Þ

where y is the vector containing the signal samples. The estimate
x̂a can be written as

x̂a ¼ maxx½JðxÞ� ¼ maxx½CWCT � ð8Þ

calling C ¼ yTD and W ¼ ðDTDÞ�1
and omitting the dependencies on

x.Note that C is a 1� ð2Hþ 1Þ vector andW is a ð2Hþ 1Þ � ð2Hþ 1Þ
square matrix.

The value x̂a, that maximizes the function (7), also nullifies the
derivative with respect to x of JðxÞ:

JxðxÞ ¼ dJðxÞ
dx

¼ 2CxWCT þ CWxC
T ð9Þ

where with the operator ½��x is indicated the elementwise derivative
with respect to x. In the above expressions, it has been exploited
the symmetry of the matrixes W, that implies CxWCT ¼ CWCT

x. It
is important to highlight again that JðxÞ and its derivative JxðxÞ
are function only of the variable x. JxðxÞ is a transcendental equa-
tion and a closed-form expression of its roots does not exist. This is
the reason why an iterative method is still required. In Fig. 1 the
function JðxÞ (top) and its derivative JxðxÞ (bottom) of a generic
sinusoidal function with additive Gaussian noise are shown.

The basic idea of the proposed approach to estimatexa consists
in the expansion of JxðxÞ in Taylor series of g order around a cen-
tral frequency x0, as shown in (10).

JxðxÞ ’
Xg

i¼0

1
i!
diJxðxÞ
dxi

�����
x¼x0

ðx�x0Þi ¼
Xg

i¼0

1
i!
JðiÞx ðx0ÞDxi ð10Þ

In Eq. (10) Dx indicates the difference between x and the cen-
tral frequency x0. Fig. 2 shows as the Taylor’s polynomials is a
good approximation of the function JxðxÞ around the central fre-
quency x0.

If x0 is sufficiently close to the actual frequency xa, the esti-
mate x̂a can be calculated as a zero of polynomial (10) instead of
the zero of the function JxðxÞ. In this way, the estimation is no
longer recursive since the analytic expressions of the roots of a
polynomial up to the fourth order are well known. Unlike the clas-
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