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a b s t r a c t

This paper proposes a denoising method based on the constants obtained from the intrinsic mode func-
tions (IMFs) of the noise. In particular, the model based constant is calculated using the analytical form of
both the energy and the mean period of the first IMF of the noise. For practical situations, the correspond-
ing constants are obtained using the sums of logarithms of the real energies and real mean periods of the
IMFs of noise. Since the corresponding constants obtained using the practical data of the high order IMFs
suffer from large fluctuations, these obtained values are unreliable. To address this issue, the relative per-
centage errors between the corresponding constants obtained using the practical data and the calculated
model based constant are computed only using the second IMF to the sixth IMF. In this case, the corre-
sponding constants obtained using the practical data of the selected IMFs are more reliable and less fluc-
tuated. Next, the upper bound and the lower bound of the corresponding constants obtained using the
practical data of the selected IMFs are computed. As no parameter is required to be predefined in the pro-
posed algorithm, the proposed algorithm is more reliable than the existing algorithms. Computer numer-
ical simulation results also show that the proposed algorithm outperforms the existing algorithms.

� 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Many signals obtained from practical systems are contaminated
by additive white Gaussian noises. These noises could destruct the
structures of the signals which cause the degradations of the

system performances. Therefore, suppressing the noises while pre-
serving the basic structures of the signals is important for many
applications such as for power system applications [1], industrial
turbine applications [2] and biomedical science applications [3].

Currently, linear time invariant methods such as the lowpass
filtering technique are widely used for the denoising applications
because they are easy to be implemented. However, these methods
assume that the signals are stationary while most of practical sig-
nals are nonstationary. Also, the averaging effect introduced by the
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weighted sum in the convolution operator results to the failure of
tracking the sudden jumps in the signal. On the other hand, the
wavelet thresholding methods [4] are found to be effective for
denoising some nonstationary signals. However, these wavelet
approaches require to predefine the basis functions and the prede-
fined basis function does not perform well for all practical signals.
Thus, the methods may not achieve satisfied performances for
some signals.

Recently, a nonlinear and adaptive signal decomposition
method referred to the empirical mode decomposition (EMD)
approach is proposed [5]. Since the EMD approach decomposes
the signal to a finite set of IMFs based on the local time character-
istics of the signal, it is potentially useful in signal denoising. There
are several existing EMD based signal denoising methods. These
methods are based on deciding the IMFs whether they are domi-
nated by the signal or dominated by the noise. Then, the denoised
signal is reconstructed using the signal dominated IMFs. In [6], five
different denoising strategies for selecting the signal dominated
IMFs are proposed. The strategies are based on different metrics
such as the Pearson’s correlations, the number of iterations and
the entropy. It is proposed in [7] that a threshold region is defined
based on the detrended fluctuation analysis (DFA). By comparing
the DFA slope of each IMF to the threshold region, the signal dom-
inated IMFs and noise dominated IMFs are decided. In [8], the sig-
nal dominated IMFs and the noise dominated IMFs are clustered
based on the mutual information between the autocorrelation
function of the noisy signal and that of each IMF. Moreover, some
other related methods based on the correlation dependent thresh-
old [9,10], relative entropy [11] and optimization [12] are pro-
posed. However, most of these methods require to predefine the
thresholds for making the decision. Inappropriate thresholds will
cause poor results. In order to overcome this problem, some
threshold free denoising methods are proposed. A consecutive
mean squared error (CMSE) criterion is proposed to select the IMFs
[14]. This criterion is based on the fact that the energies of the IMFs
of the pure noise decrease as the indices of the IMFs increase
[15–17]. Therefore, the first local minimum of the plot of the ener-
gies against the indices of the IMFs was used for discriminating the
signals and the noises. This method is a noise dependent method
because it employs the empirical characteristics of the IMFs of
the pure noise for performing the selection of the IMFs. However,
for some cases, the IMF with its index equal to the first local min-
imum in the plot of the energies against the indices of the IMFs
may not be dominated by signal. In this case, employing the CMSE
criterion for performing the denoising operation may not be effec-
tive [13]. Besides, a statistical based EMD approach was proposed.
A probabilistic similarity measure between the probability density
function (PDF) of the input signal and that of each IMF is employed
for deciding whether the IMFs are dominated by the signal or dom-
inated by the noise. Here, the best probabilistic similarity measure
is defined using the l2 norm criterion [13]. The objective is to select
the IMFs whose PDFs catch the dominated features of the noise
free signal. Therefore, this method can be considered as a signal
dependent method because it is not based on the empirical charac-
teristics of the IMFs of the pure noise. However, this approach is
not suitable for various kinds of signals. This is because some IMFs
dominated by the signal may also have large l2 norm distances.

Furthermore, it is proposed in [17] that the uniformly dis-
tributed white noise is employed to decide whether the IMFs are
dominated by the signal or dominated by the noise. The constants
of the pure white noise are estimated based on the real energies
and the numbers of peaks of the IMFs. Here, the analytical form
of the constants has not been exploited. Instead, the spread lines
for the constants obtained from the IMFs of the noisy samples
are modeled by an exponential function. The components with

constants inside the spread lines are regarded as noises and vice
versa as signals. However, the spread lines diverge quickly for high
order IMFs. Hence, the constants corresponding to the high order
signal components may locate between the lines easily. Therefore,
this method is unreliable. Moreover, it is very difficult to select an
appropriate confident limit which controls the separation between
the spread lines. The spread lines at high confident limit suffer
from a large separation. As a result, the constants obtained from
some high order IMFs dominated by signal can locate between
the lines. On the other hand, the constants obtained from some
low order IMFs dominated by noise may locate out of the spread
lines at low confident limit. This is because the separation between
the spread lines is small. Since different confident limit will result
to different discrimination results, an inappropriate confident limit
will cause the wrong discrimination results.

To address the above issues, this paper proposes a noise depen-
dent method so that it is suitable for various kinds of signals. The
model based constant is calculated using the analytical form of
both the energy and the mean period of the first IMF of the additive
Gaussian distributed white noise. The relative percentage errors
between the corresponding constants obtained using the practical
data and the calculated model based constant are computed only
using the second IMF to the sixth IMF. This is because the corre-
sponding constants obtained using the practical data based on
these low order IMFs of noisy samples are relatively concentrated
and reliable. The details will be discussed in detail in Section 3.
Also, our selection criterion is not based on the first local minimum
of the plot of the energies against the indices of the IMFs. There-
fore, the corresponding disadvantages are avoided. Moreover, our
proposed method is not required to predefine an appropriate con-
fident limit. This is because the upper and the lower bounds of the
corresponding constants are determined automatically. Therefore,
our proposed method is a parameter free approach.

The outline of this paper is as follows. Section 2 briefly reviews
the procedures for performing the EMD. Section 3 presents our
proposed method for performing the parameter free and reliable
signal denoising algorithm based on the constants obtained from
the IMFs of the white Gaussian noise. Some computer numerical
simulation results are presented in Section 4. Finally, a conclusion
is drawn in Section 5.

2. Brief review on the EMD

Performing the EMD of signals is to iteratively detect the envel-
opes of the signal as well as to perform the sifting of the signals.
Since this decomposition is based on the local time scale character-
istics of the signals, it is applicable to nonlinear and nonstationary
signal representations. The definition of the IMF is as follows [5]:

Definition (IMF): A function is considered as an IMF if it satisfies
the following two conditions: (1) the total number of extrema and
the total number of zero crossing points are equal, or their differ-
ence is no more than 1; and (2) its local mean is zero.

Given a signal xðnÞ, where n ¼ 1;2;3; . . . ;N, the procedures for
performing the EMD of xðnÞ are as follows [5]:

(1) Initialization: Denote r0ðnÞ ¼ xðnÞ and i ¼ 1.
(2) Compute the ith IMF denoted as ciðnÞ using the following

iterative procedures:
(a) Denote d0ðnÞ ¼ ri�1ðnÞ and j ¼ 1.
(b) Identify all the local maxima and minima of dj�1ðnÞ.
(c) Generate the upper and the lower envelopes of dj�1ðnÞ

denoted as eupðtÞ and elowðnÞ, respectively, using the
cubic spline interpolation (typically).

(d) Calculate the local mean denoted as mðnÞ ¼ eupðnÞþelowðnÞ
2 .

(e) Performing the sifting operation by djðnÞ¼dj�1ðnÞ�mðnÞ.
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