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a b s t r a c t

Due to its simplicity and low cost, the hole drilling strain gauge method is one of the most popular tech-
niques to determine residual stresses. The Standard ASTM E837-13 distinguish between constant and
variable stresses in depth. Each type of measurement has an associated uncertainty. The goal should
be the quantification and reduction in its magnitude to be acceptable for the purposes of the measure-
ment. Uncertainty estimation associated with this method has not been addressed in depth. The present
work deals with uncertainty calculation in the determination of non-uniform residual stresses by the
integral method. A general estimation procedure by Monte Carlo method, where many uncertainty
sources have been considered, is presented. In normal experiment condition, most of these sources are
significant and the irrelevant ones have been identified. Monte Carlo method verifies that a measurement
uncertainty evaluation with the GUM uncertainty framework can be performed.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The strain gauge hole drilling method proposed by Mathar in
1934 [1] describes the drilling of a small shallow hole in the sur-
face of the specimen. An adjacent strain gauge is able to register
deformations in the specimen during the process. Deformations
arise when stresses contained in the specimen are released with
the material removal.

By measuring deformations, original stresses can be calculated.
In case of non-uniform stresses, the integral method can be used
[2]. Integral method calculates the influence of the relieved stress
in the given depth which, however, changes with the total depth
of the hole. Although there are some other methods to decode
non-uniform stresses [2–4], integral method is conceptually and
algebraically simple and is the method followed in this article.

The hole drilling strain gauge method is standardized in ASTM
E837-13 [5]. It uses a particular case of the integral method.
Although the experimental procedure is not widely addressed in
the ASTM E837-13, there are some references that deal with it
extensively [6,7].

The method is physically limited by the Saint-Venant Principle,
which indicates that the surface strain response quickly becomes
insensitive to the effect of interior stresses existing at increasing
distances from the measurement surface. Due to this physical
limit, a painstaking experimental procedure is essential for the
quality of the measurement. After experimental technique, there
are two mathematic strategies that can be used to improve the
effects of the experimental defects. The first strategy is to evaluate
the measured strains in a small number of hole depth increments,
with steps larger as the hole depth increase [8]. This is the
technique used in this work. The other technique is to use the
Tikhonov regularization [9] and it is the technique considered in
ASTM E837-13.

There are some references dealing with the uncertainty of the
hole-drilling strain gauge method.

Oettel summarize and classify the uncertainty sources in Ref.
[10]. Scafidi et al. present a procedure to evaluate the stress uncer-
tainty in the case of uniform stresses [11]. They propose proce-
dures for the correction of the main deviations in order to
overcome if one or more of the experimental influence parameters
fall out of the corresponding standard limitations. These deviations
are the thermal effects, the hole-rosette eccentricity, the hole-
bottom fillet radius and the plasticity effects. Unfortunately, the
correction of these errors is not always possible regarding non-
uniform stresses. In the case of thermal effect, the correction is
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possible. A correction for the eccentricity is available [12–14] but it
is not directly applicable to the integral method. To date, it is not
possible for the correction of hole-bottom fillet radius and plastic-
ity effect for non-uniform stresses. This work is only applicable
(except thermal effects) to the case where the experimental
parameters fall in the ASTM E837-13 and therefore the influence
of these uncertainty sources are almost negligible.

Vangi examined the effects of measurement uncertainty
sources on the evaluation of residual stresses with the integral
method [15]. He considered uncertainties associated with the
relaxed strains and the hole diameter. Independent strain devia-
tions with constant values for all measurement are also
contemplated.

Zuccarello evaluates the stress uncertainty in order to optimize
the calculation steps in the evaluation of residual stress with the
integral method [8]. Only relaxed strains are taken into account
because other experimental sources produce stress uncertainties
proportional to the actual stress. If the other experimental sources
are taken under consideration, it would not be possible to obtain
any useful prior indication for the stress uncertainty. In order to
overcome the non-independence of the strains uncertainty compo-
nents between the different depths (they arise from the same
sources), the strain increments instead of the strains are consid-
ered since their correlation is far weaker.

Schajer and Altus describe a method for calculating the stress
range that has a specified probability of containing the actual
residual stresses with the integral method [16]. They consider
uncertainty components associated with strains, hole depths, hole
diameter and material constants. It is assumed that these uncer-
tainty components have statistical normal distributions with zero
mean and they are independent of each other and each one is lin-
early combined. A calculation strategy is followed to overcome the
violation of the assumption of error independence when all error
types exist at the same time.

Prime and Hill propose a new approach to estimate combined
uncertainty in residual stress inverse solutions and to select the
order of the series expansion [17]. They consider the covariance
between fit parameters and the article is mainly focused in the
incremental slitting method. Two sources are considered: fitting
model uncertainty (model error in the literature) (ability of the cho-
sen series expansion to fit the actual stress variation) and strain
uncertainty.

The present work is focused on the correct uncertainty estima-
tion of non-uniform residual stresses determined by the hole dril-
ling strain gauge method. The probable uncertainty sources have
been taking into account since strain uncertainty is not always
the only significant uncertainty [16,17]. Monte Carlo method
(MCM) is proposed to propagate the uncertainty [18]. MCM
implies some advantages over application of GUM uncertainty
framework (GUF) [19]: simpler and more manageable expres-
sions, the possibility to evaluate all the uncertainties at same

time and a quite easy input of correlated variables. In addition,
MCM avoids some of the limitations of the GUF: the use of a lin-
ear approximation in some cases can be inadequate and the out-
put probability density function can departs appreciably form a
normal distribution. With these considerations, some of the sim-
plifications and approaches used sometimes in the previous
works are avoided: few uncertainty sources and independence,
linearity, zero mean, constant values and normal distribution of
the variables. As an example, the calculation process proposed
is applied for the case of Ti6Al4V laser peened metallic sample.
The possibility of applying of these particular results to other
materials and treatments, the limitations of the GUF and the
influence of some sources will be explored. Finally, the example
is compared with the uncertainty that would be obtained follow-
ing the Ref. [16].

2. Relationship between strains and stresses

In preparation for the uncertainty analysis, this part concisely
reviews the integral method [2].

Measured relaxed strains in j (number of hole depth steps so
far) are denominated e1, e2 and e3. They have been measured with
a rosette with three strain gauges oriented to 0�, 45� and 90�
respectively. The stresses in the directions of 0� and 90� are
denominated r1 and r3, and the shear stress normal to these direc-
tions, s13 (Fig. 1).

If k is the sequence number for hole depth steps (Fig. 2), with
k 6 j, the following relations can be considered:

pj ¼ ðe3 þ e1Þj=2 ð1Þ

qj ¼ ðe3 � e1Þj=2 ð2Þ

tj ¼ ðe3 þ e1 � 2e2Þj=2 ð3Þ

Pk ¼ ððr3Þk þ ðr1ÞkÞ=2 ð4Þ

Qk ¼ ððr3Þk � ðr1ÞkÞ=2 ð5Þ

Tk ¼ ðs13Þk ð6Þ
The integral method formulation carries the following matrix

relations (where the bar accent indicates a matrix and the arrow
accent a vector):
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Fig. 1. Gauge placement, drilling location and sequencing.
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