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a b s t r a c t 

Iterative learning control (ILC) is an effective technique that improves the tracking performance of sys- 

tems by adjusting the feedforward control signal based on the memory data. The key in ILC is to design 

learning filters with guaranteed convergence and robustness, which usually involves lots of tuning effort 

especially in high-order ILC. To facilitate this procedure, this paper proposes a systematics approach to 

design learning filters for arbitrary-order ILC with guaranteed convergence, robustness and ease of tuning. 

The filter design problem is transformed into an H ∞ 

optimal control problem for a constructed feedback 

system. This approach is based on an infinite impulse response (IIR) system and conducted directly in 

iteration-frequency domain. The proposed algorithm is further advanced to the one that explicitly con- 

siders system variations based on μ synthesis. Important characteristics of the proposed approach such as 

convergence and robustness are explored and demonstrated through both simulations and experiments 

on a wafer scanning system. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Iterative learning control (ILC) is an effective technique to sup- 

press repetitive disturbances and improve the tracking perfor- 

mance of systems that operate in a repetitive manner. It tunes the 

feedforward control signal iteratively based on the memory data 

from previous iterations. ILC has been applied to a variety of indus- 

trial problems including robot manipulators [1–4] , micro position- 

ing stages [5,6] , hard disk drives [7,8] and wafer scanning systems 

[9–11] . Reference [12] provided detailed ILC analysis with applica- 

tions to various industrial areas. 

One main challenge in ILC is to design learning filters to guar- 

antee both the convergence of the tracking error and the robust- 

ness to system variations. A common design approach is based on 

the pseudo-inverse of the plant dynamics, which may be hard to 

obtain, or introduce a sensitivity problem to unmodeled dynam- 

ics [13] . An alternative approach with little tuning effort was pro- 

posed based on the H ∞ 

optimal control theory [14,15] . This method 

was further improved by μ-synthesis technique to explicitly take 
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system variations into account with acceptable compromise of the 

convergence rate [16–19] . Comprehensive reviews of the basic for- 

mulations of ILC, its variations and the frequency-domain design 

approaches were provided in [20–23] . 

Most research efforts for the H ∞ 

/ μ-based approach have fo- 

cused on first-order ILC which only utilizes the previous iteration. 

Recently high-order ILC that utilizes more data from previous it- 

erations has gained increasing attention. Compared to first-order 

ILC, high-order ILC has more flexibilities when designing learn- 

ing filters and is promising to achieve better performance such as 

faster tracking or additional robustness to some non-repetitive dis- 

turbances [24–28] . Despite such favorable performance, designing 

multiple learning filters is a difficult task with lots of tuning ef- 

forts in high-order ILC. To reduce such effort s, similar to first-order 

ILC, H ∞ 

synthesis was utilized to design learning filters in high- 

order ILC. For example, in [29,30] , the algorithms were proposed 

in the super-vector framework based on a finite impulse response 

(FIR) system and the lifting technique, which may result in more 

computational cost. There is also some research to explore the de- 

sign of non-causal learning filters for the ILC that assumes finite 

horizons for each iteration, such as [31,32] , which is difficult to 

extend to the frequency-domain ILC design methodology that as- 

sumes infinite horizons for each iteration. To deal with this, Son 

et al. [33] proposed an approach to take the non-causal case into 

account and simultaneously optimize the learning filters and the 

Q filters for first-order ILC. However, the frequency-domain design 
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approach for high-order ILC, including both causal and non-causal 

cases, has not been fully investigated in the existing literature. 

This paper develops a systematic frequency-domain design 

framework for high-order ILC based on the H ∞ 

/ μ synthesis to fill 

in the knowledge gap. In this paper, every iteration is assumed to 

have infinite horizons, and the systems are represented by infinite 

impulse response (IIR) filters for easy implementation and efficient 

computation. The learning filters are generated off line through de- 

signing an H ∞ 

optimal controller for a constructed feedback sys- 

tem. The ILC algorithms based on μ-synthesis are also developed 

to explicitly consider system variations. The effectiveness of the 

proposed ILC algorithms are demonstrated on a wafer scanning 

system through both simulations and experiments. The main con- 

tribution of this paper lies in the novel frequency-design approach 

with systematic inclusion of both first-order and high-order ILCs. 

This paper extends our previous work on high-order ILC [34] , by 

including the μ-based ILC that explicitly considers system uncer- 

tainties, and providing detailed design guidelines and experimen- 

tal validation, as well as preliminary effort in exploring the design 

of non-causal learning filters using robust control design method- 

ology. 

The remainder of the paper is organized as follows. 

Section 2 reviews the standard ILC formulations and examines the 

trade-off between the robustness and the repetitive disturbance 

suppression. Section 3 formulates the design of the learning filter 

in first-order ILC into an H ∞ 

optimization problem. Section 4 ex- 

tends the formulation in Section 3 by incorporating system 

variations explicitly based on μ synthesis. Then, Section 5 ad- 

vances the robust formulation of first-order ILC to a general 

formulation of arbitrary-order ILC with guaranteed convergence 

and robustness. Section 6 provides the demonstration and vali- 

dation through simulations and experiments. Section 7 concludes 

the paper. 

2. ILC basics 

Consider a general discrete-time linear time invariant (LTI) sys- 

tem 

y = P (u + d) (1) 

where y is the output, u is the control signal, d is the disturbance, 

and P is the plant. P can be described either by an FIR model: 

P = h 0 + h 1 z 
−1 + h 2 z 

−2 + · · · (2) 

or by an IIR model: 

P = 

b 1 z 
−1 + b 2 z 

−2 + . . . + b n z 
−n 

1 + a 1 z −1 + a 2 z −2 + . . . + a n z −n 
(3) 

where z is the discrete frequency domain operator. As mentioned 

in the introduction, generally the ILC is designed based on the FIR 

model (2) ; alternatively, this paper designs the ILC based on the IIR 

model (3) that may include feedback terms and is more efficient 

for practical implementation. 

The structure of the ILC algorithm for system (1) is shown in 

Fig. 1 , where the reference r is assumed to remain unchanged 

through iterations. e = r −y is the tracking error, and u f is the feed- 

forward control signal that is refined by the ILC algorithm iteration 

by iteration. C is a feedback controller. u = C(u f + e ) is the total real- 

time control signal. Use j to index the iterations. By assuming that 

each iteration is of infinite horizon, the tracking error during the 

j th iteration is 

e j = T u u 

f 
j 
+ T r r + T d d j (4) 

where T u , T r , and T d are the closed-loop transfer functions from u f 
to e, r to e , and d to e , respectively, 

Fig. 1. Control system with ILC. 

T u = −( 1 + PC ) 
−1 PC 

T r = ( 1 + PC ) 
−1 

T d = −( 1 + PC ) 
−1 P (5) 

A standard first-order ILC is designed as follows, 

u 

f 
j+1 

= Q(u 

f 
j 
+ Le j ) (6) 

where the filter Q and the learning filter L are to be designed. Sub- 

stituting Eq. (6) into Eq. (4) , we have 

e j+1 = T u 
[
Q 

(
u 

f 
j 
+Le j 

)]
+T d d j+1 + T r r 

= Q ( 1 + T u L ) e j +T r ( 1 − Q ) r + T d 
(
d j+1 − Qd i 

)
(7) 

Assuming that the disturbance d is consistent through iterations, 

i.e., d j+1 = d j , Eq. (7) becomes 

e j+1 = Q(1 + T u L ) e j + T r (1 − Q ) r + T d (1 − Q ) d (8) 

A sufficient condition to guarantee the stability of Eq. (8) with re- 

spect to e j is 

‖ Q(1 + T u L ) ‖ ∞ 

< 1 (9) 

To eliminate the tracking error, ideally Q = 1 , and Eq. (8) be- 

comes 

e j+1 = (1 + T u L ) e j (10) 

In this case, if ‖ 1 + T u L ‖ ∞ 

< 1 , e j+1 converges to zero monotonically 

over iterations. However, it is usually difficult to find a L such that 

| (1 + T u L )( jw ) | < 1 is achieved over all frequencies. A major chal- 

lenge comes from system variations in T u which are usually large 

at high frequencies. Therefore, to obtain robustness against system 

variations, instead of setting Q = 1 , Q is often designed as a low- 

pass filter. In the design of such Q , the effects on T r (1 −Q ) r and 

T d (1 −Q ) d must be considered. Nevertheless, the reference r is usu- 

ally a low-frequency signal, so that T r (1 −Q ) r is almost zero. The 

disturbance d , on the other hand, usually contains high-frequency 

components, which may enlarge the effect of T d (1 −Q ) d in Eq. (8) . 

In general, a trade-off exists when designing Q : the robust- 

ness to system variations requires a small gain of Q at high fre- 

quencies, while the disturbance rejection desires a high band- 

width of Q . To address this trade-off effectively, this paper de- 

signs ILC in two steps: (1) design L through the minimization of 

‖ (1 + T u L ) W ‖ ∞ 

, where W is the weighting filter to ‘shape’ the ex- 

pected frequency response of (1 + T u L )( jw ) ; (2) design Q to guar- 

antee ‖ Q(1 + T u L ) ‖ ∞ 

< 1 . 

3. First-order ILC based on H ∞ 

synthesis 

The learning filter (denoted as L ∞ 

in this section) design prob- 

lem can be formulated as an H ∞ 

optimization problem: 

min 

L ∞ 
‖ (1 + T u L ∞ 

) W ‖ ∞ 

(11) 

where W is a frequency-dependent weighting filter to provide ad- 

ditional design flexibilities and mitigate the trade-off in the design 



Download English Version:

https://daneshyari.com/en/article/5006997

Download Persian Version:

https://daneshyari.com/article/5006997

Daneshyari.com

https://daneshyari.com/en/article/5006997
https://daneshyari.com/article/5006997
https://daneshyari.com

