
Mechatronics 45 (2017) 130–142 

Contents lists available at ScienceDirect 

Mechatronics 

journal homepage: www.elsevier.com/locate/mechatronics 

Sensorless parameter estimation of electromagnetic transducer 

considering eddy currents 

Toru Ikegame 

a , ∗, Kentaro Takagi a , Tsuyoshi Inoue 

a , Ichiro Jikuya 

b 

a Department of Mechanical Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 Japan 
b Faculty of Electrical and Computer Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan 

a r t i c l e i n f o 

Article history: 

Received 27 May 2016 

Revised 9 May 2017 

Accepted 6 June 2017 

Keywords: 

Electromagnetic transducer 

Parameter estimation 

Modeling 

Eddy currents 

Shunt damping 

a b s t r a c t 

This paper presents a method of estimating the parameters of an electromagnetic transducer with- 

out sensors. The proposed method utilizes the measured admittance of the electromagnetic transducer, 

and therefore position, velocity, and/or acceleration sensors are not necessary in this framework. Novel 

impedance models are proposed based on the basic physical principles of electromagnetics; in particular, 

the effect of eddy currents has been included in these proposed models. The validity of the proposed es- 

timation method and models was experimentally demonstrated by comparing the parameter estimation 

and vibration control capabilities of the proposed models with three conventional models. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

An electromagnetic transducer can act as an actuator by utiliz- 

ing the Lorentz force generated from the current flowing through 

the magnetic field [1–3] . It can also act as a sensor by utilizing 

the motional electromotive force generated from the motion of a 

coil in the magnetic field [4] . Application examples of the electro- 

magnetic transducer include but are not limited to position con- 

trol [5,6] , sound amplification using loudspeakers [7–11] , vibration 

isolation [12] , valve actuation [13] , load support magnetic bearings 

[14] , magnetic levitation [15] , vehicle suspension [16–18] , and en- 

ergy harvesting [19–21] . 

Electromagnetic shunt damping is an interesting technique that 

makes use of actuation and sensing capabilities simultaneously 

[22–37] . This technique uses a shunted circuit connected across 

the terminals of an electromagnetic transducer for vibration con- 

trol and does not use position, velocity, and/or acceleration sen- 

sors. In previous studies [22,23] , the resonant shunt circuit is de- 

signed to be analogous to a dynamic absorber, which is effective in 

providing nominal performance but is fragile when system param- 

eters such as the natural frequency vary. Hence, precise modeling 

and accurate parameter estimation are crucial for the design of the 

shunt circuit. 
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In previous works, the electrical system in the electromagnetic 

transducer has been simply modeled by a series connection of 

the impedance in the coil, the internal resistance, and the mo- 

tional electromotive force in the coil. The impedance in the coil 

is typically modeled by the self-inductance [15,16,20–37] . Among 

the previously published studies, a few consider eddy currents to 

model the impedance either by adding a shunt resistance in par- 

allel to the self-inductance [8,9] or by the distributed model pre- 

sented in [10,11] . However, these impedance models do not fully 

represent the measurement data, as will be shown in this pa- 

per, and practical applications continue to require more accurate 

impedance models, such as that presented here. 

This paper presents a method for the sensorless parameter es- 

timation of an electromagnetic transducer; in this method, the pa- 

rameters of the mechanical, electromechanical coupling, and elec- 

trical system models are simultaneously estimated. This framework 

is consistent with that of electromagnetic shunt damping. The ter- 

minal voltage and current of the electromagnetic transducer are 

measured; specifically, the admittance is measured using an LCR 

meter or an impedance analyzer, but position, velocity, and/or ac- 

celeration sensors are not used. The parameter estimation is for- 

mulated by the weighted nonlinear least-squares method; in addi- 

tion, the selection of the initial estimates for the numerical opti- 

mization is discussed in detail. The preliminary idea of this paper 

has been presented in [38,39] , in which the method for the sensor- 

less parameter estimation of an electromagnetic transducer is in- 

troduced only for the self-inductance to construct the impedance 

model. Inspired by the previous works [8–11,40] , the present pa- 
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per introduces novel impedance models that consider eddy cur- 

rents. The basic physical principles of electromagnetics, such as 

Ampere’s circuital law, Gauss’s law for magnetism, Faraday’s law 

of induction, and Ohm’s law are applied to model the impedance, 

and then, the partial differential equation with variable coefficients 

is obtained. It is difficult to convert this equation to a transfer 

function, and therefore, two types of physical simplifications are 

considered. One impedance model is derived by using spatially 

uniform parameters and spatially distributed eddy currents. The 

other impedance model is derived by using spatially nonuniform 

parameters and spatially lumped eddy currents. The effectiveness 

of the proposed parameter estimation method and the validity of 

the proposed models are demonstrated by performing experiments 

related to both parameter estimation and shunted vibration con- 

trol, comparing the results obtained by the proposed method with 

those obtained by three conventional models, as described below. 

The remainder of this paper is organized as follows. We start by 

presenting an overview of the conventional modeling techniques 

of an electromagnetic transducer for shunted vibration control and 

then propose novel impedance models that consider eddy currents 

in Section 2 . We then proceed to describe the development of the 

parameter estimation method in Section 3 . We report the demon- 

stration of the proposed parameter estimation method through ex- 

periments in comparison with those of the conventional models in 

Section 4 . In Section 5 , we present the application of the parame- 

ter estimation results to shunted vibration control experiments to 

evaluate the proposed models and the accuracy of parameter esti- 

mation. Finally, we make some concluding remarks in Section 6 . 

2. Modeling 

2.1. Conventional modeling technique for a composite 

electromechanical system 

This subsection introduces a conventional modeling technique 

for the design and analysis of a composite electromechanical sys- 

tem. The composite system consists of three subsystems: a me- 

chanical system, an electromechanical coupling system, and an 

electrical system. 

In many vibration control systems, a mechanical system is mod- 

eled by a simple mass-spring-damper system coupled to an elec- 

tromagnetic transducer [22,31,38,39] , as shown in Fig. 1 . The equa- 

tion of motion is given by 

m 

d 2 x 

dt 2 
+ c 

dx 

dt 
+ kx (t) = f d (t) + f l (t) , (1) 

where m [kg] is the mass, c [Ns/m] is the damping coefficient, k 

[N/m] is the spring constant, x ( t ) [m] is the displacement of the 

mass-spring-damper system, f l ( t ) [N] is the Lorentz force gener- 

ated from the electromagnetic transducer, and f d ( t ) [N] is the dis- 

turbance force. 

An electromechanical coupling system is given by the following 

pair of equations under suitable assumptions [22,23,31,36,38,39] : 

f l ( t ) = φ i e ( t ) , (2) 

v emf ( t ) = φ ˙ x ( t ) , (3) 

where φ [N/A or Vs/m] is the electromechanical coupling coeffi- 

cient, i e ( t ) [A] is the current flowing through the electromagnetic 

transducer, and v emf ( t ) [V] is the motional electromotive force. 

An electrical system is modeled by the series connection of 

the impedance of the coil, Z c ( s ) [ �], internal resistance in the 

coil, R 0 [ �], and motional electromotive force, v emf ( t ), as shown in 

Fig. 2 . The circuit equation is given by 

v e (t) − v emf (t) = R 0 i e (t) + v c (t) , (4) 

Fig. 1. Simple mass-spring-damper system coupled to an electromagnetic trans- 

ducer [38] . 

Fig. 2. Electrical system model of the series connection of the impedance of the 

coil, Z c ( s ), the internal resistance in the coil, R 0 , and the motional electromotive 

force, v emf ( t ). 

where v e ( t ) [V] is the voltage across the electromagnetic trans- 

ducer, and v c ( t ) [V] is the voltage across Z c ( s ). By taking the Laplace 

transformation, the impedance of the coil, Z c ( s ) [ �], is defined by 

Z c (s ) := 

˜ v c (s ) 

˜ i e (s ) 
, (5) 

where the tilde represents a signal in the Laplace domain. 

The impedance of the coil, Z c ( s ) [ �], has been typically modeled 

by the self-inductance, L 0 [H], in [15,16,20–37] . In order to distin- 

guish from the other impedance models, the impedance model 

Z I c (s ) = L 0 s (6) 

is hereafter called the conventional model I . The superscript in Z c ( s ) 

indicates the name of the models such as the conventional models 

or proposed models, as will be shown later. 

In addition, the impedance in the coil has also been modeled by 

adding a shunt resistance, R μ, in parallel to the self-inductance, L 0 , 

in [8,9] . This shunt resistance was considered to be largely due to 

eddy current loss [8] . This impedance model, which is hereinafter 

called the conventional model II , is then given by 

Z II c (s ) = 

R μL 0 s 

L 0 s + R μ
. (7) 
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