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a b s t r a c t 

In this paper, an integrated estimation and control system is developed for the stability and traction con- 

trol of electric vehicles. A model predictive control technique is used to track the desired vehicle yaw 

rate while maintaining small lateral velocity and tire slip ratios. This paper proposes a new method to 

control the lateral stability of the vehicle. In this method, the lateral vehicle velocity is controlled indi- 

rectly by adjusting the reference yaw rate. This reduces the size of the prediction model and its compu- 

tational complexity. The controller requires the vehicle’s lateral and longitudinal velocities as well as its 

tire forces for stability and traction control. This paper also proposes a novel velocity estimation scheme 

that uses the combined vehicle kinematics and tire model. The developed Kalman-based estimator pro- 

vides velocities and lateral forces at each corner that are robust to changes in the road condition. The 

combined model-based and kinematic-based estimation structure mitigates some common problems of 

the widely used kinematic-based estimators such as the spikes and drifting issues. The stability of the 

proposed time-varying estimator is also investigated. The designed control and estimation scheme are 

experimentally validated on various driveline configurations and proven to provide reliable results. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Active vehicle stability systems have significantly reduced the 

number of road accidents over the past decades [1–3] . These sys- 

tems help the driver maintain vehicle stability in critical driving 

situations, such as high speeds, sudden lane changes, and slippery 

road conditions. Despite high adoption rate of the stability control 

systems [1] , road accidents still continue to claim lives. Therefore, 

development of more advanced stability control algorithms is re- 

quired. 

Vehicle stability control systems require vehicle states (veloc- 

ities and forces) to control wheel slips, vehicle yaw rate, and 

sideslip angle. Longitudinal and lateral velocities make major con- 

tributions to traction and stability control systems, respectively. 

They can be measured with the advent of GPS, but the poor ac- 

curacy of the most commonly implemented conventional GPSs and 

their lack of reception in some geographical areas are their primary 

impediments. Two approaches for longitudinal/lateral velocity esti- 

mation have been adopted by the literature. One is the modified 

kinematic-based approach which uses available acceleration and 
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yaw rate measurements from an Inertial Measurement Unit (IMU) 

and estimates the vehicle states by employing Kalman-based [4] , 

or nonlinear [5] observers. This method does not employ a tire 

model, but instead, sensor bias and noise should be meticulously 

identified as shown in [6] , using an accurate GPS for a reliable es- 

timation, which imposes additional costs on commercial vehicles. 

The other velocity estimation method is tire model-based. It 

uses IMU data and corrects the estimation with an observer on 

the tire forces. Although promising, it requires a good perception 

of the road condition as well as a precise tire model, especially in 

the tire saturation region. To address the time-varying tire param- 

eters, nonlinear observers in [7] and extended Kalman filter (EKF) 

in [8,9] are employed for estimation of the longitudinal and lateral 

states. Vehicle states and parameters of the tire model are esti- 

mated in [10,11] using EKF along with the Burckhardt tire model 

[12] . An unscented Kalman filter (UKF) [13] is introduced for the 

velocity estimation in [14,15] , by using tire friction parameters. 

Kayacan et al. [16] addressed the estimation of the lateral states 

and sideslip angle of an autonomous tractor-trailer vehicle with 

a nonlinear moving horizon estimation combined with a fast dis- 

tributed nonlinear model predictive control. However, road friction 

information is required in these approaches. 

Alternatively, to tackle the unknown road friction issue, some 

studies estimated road friction and the longitudinal/lateral veloci- 
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Nomenclature 

z̄ x , ̄z y longitudinal and lateral LuGre internal states 

β vehicle sideslip angle 

ω 

∗ vector of zero slip (rolling) wheel speeds 

ω d vector of desired wheel speeds 

δf front wheel steering angle 

ˆ v x , ̂  v y estimated velocities at the vehicle’s C.G. 

V , W observability and controllability grammians 

�x , �y velocity estimation uncertainties 

P k , P mk updated and predicted error covariances in UKF 

ω iJ rotational speed of wheel iJ 

φv , θ v vehicle roll and pitch 

φm, n state transition matrix 

a x , a y measured longitudinal and lateral accelerations 

f x iJ , f y iJ normalized longitudinal and lateral tire forces 

F x iJ , F y iJ , F z iJ longitudinal, lateral, and vertical tire forces 

g gravitational constant (9.81 m/s 2 ) 

I w 

wheel’s moment of inertia about the rolling axis 

I z vehicle’s yaw moment of inertia 

K k Kalman gain in UKF 

k us desired vehicle understeer gradient 

l vehicle wheelbase 

L i distance from C.G. to the center of axle i 

m vehicle mass 

M F y moment of lateral tire forces about vehicle C.G. 

N c size of the control horizon 

N p size of the prediction horizon 

r vehicle yaw rate 

r d desired vehicle yaw rate 

R e wheel effective radius 

T t iJ total torque applied to wheel iJ 

v rx iJ , v ry iJ corner relative velocities in tire coordinates 

v x iJ , v y iJ velocities at corners in vehicle coordinates 

v xt iJ 
, v yt iJ 

corner velocities in tire coordinates 

v x , v y velocities at the vehicle’s C.G. 

W i trackwidth of axle i 

ties concurrently. Grip et al. suggest a nonlinear sideslip observer 

in [17] that incorporates time-varying gains and estimates vehicle 

states as well as the surface friction using a tire model. A sliding- 

mode observer is proposed in [18] based on the LuGre friction 

model [19] to estimate the speed and the road condition simulta- 

neously. Wheel braking torques, speed, and acceleration measure- 

ments are used in [20] for a sliding-mode observer to estimate ve- 

hicle velocity together with an EKF for the estimation of the Bur- 

ckhardt model’s friction parameter. Li et al. proposed a method in 

[21] to estimate the lateral velocity and road friction limits using 

steering torque sensors. In their work, the longitudinal speed is as- 

sumed to be known. To cope with the road friction changes, Zhang 

et al. [22] considered nonlinear lateral dynamics as an uncertain 

model and proposed a gain scheduling scheme due to the longi- 

tudinal velocity changes. A longitudinal speed estimation method 

is developed in [23] which combines the tire model and vehi- 

cle’s longitudinal kinematics and uses a Kalman observer. How- 

ever, high-slip cases and non-Gaussian process and measurement 

noises are challenges in their approach. Therefore, developing ve- 

locity and tire force estimators using conventional sensor measure- 

ments (wheel speeds, steering angle, accelerations, and yaw rate) 

which is robust to the road friction changes is desirable. 

Improvements in the fields of computer hardware and compu- 

tational power of vehicle electronics have led to an increased pop- 

ularity of the computationally expensive control algorithms such as 

model predictive control (MPC). MPC consists of an optimization 

in-the-loop algorithm, therefore, it results in highly optimized so- 

lutions. The drawback of MPC is that it is computationally expen- 

sive, especially compared to conventional algorithms such as PID 

or LQR techniques. 

Several variations of model predictive control have been stud- 

ied in the literature. In nonlinear MPC (NLMPC), a nonlinear pre- 

diction model is used for improved accuracy in a wider range of 

system operation. For instance, Falcone et al. [24] studied path fol- 

lowing using a nonlinear tenth-order prediction model. They used 

active steering and differential braking to adjust vehicle’s behavior 

in order to track a desired path. They compared the results with 

another predictive controller based on a simplified bicycle model. 

The results confirm that the nonlinear model can better stabilize 

the vehicle while increasing the computational complexity of the 

controller. A similar approach is used in [25,26] . Another varia- 

tions of MPC is hybrid model predictive control (hMPC). In hMPC, 

a piece-wise affine prediction model is used, which is simpler 

than a nonlinear model. A few authors have tried implementing 

hMPC in their work. The interested reader is referred to [27–29] for 

more information. Another variation of the MPC is the linear time- 

varying model predictive control (LTV-MPC). In this approach, the 

nonlinear model of the vehicle is successively linearized around 

the current vehicle state. This approach results in a linear pre- 

diction model and a linear or quadratic programming (LP or QP) 

problem. The LTV-MPC controllers are in general easier to formu- 

late and tune, and thus, widely used in the literature. For instance, 

Palmieri et al. [30] used a linear time-varying MPC method to sta- 

bilize a vehicle during a high-speed double-lane change by using 

differential brakes. A separate slip controller unit is used to gen- 

erate the desired differential braking forces at the contact patch. 

Computer simulations are used to examine the performance of the 

proposed control scheme. A similar approach is used in [31–34] . 

In an attempt to reduce the online computational cost of the 

model predictive controllers, some authors have tried the explicit 

MPC technique (e.g. [27,35] ). In this technique, the programming 

problem is solved offline in terms of the system states using multi- 

parametric programming methods. However, this method requires 

a significant memory to store the solution of the multi-parametric 

programming problem. In addition, the application of the explicit 

MPC is mostly limited to linear systems. 

In this paper, the suggested velocity estimation method treats 

acceleration measurement noises and the road condition as uncer- 

tainties and implements an unscented Kalman filter. The longitu- 

dinal and lateral velocity estimators take advantage of combining 

kinematic-based and model-based schemes without requiring road 

friction information. Another contribution of this paper is propos- 

ing a new method for indirect control of the vehicle sideslip an- 

gle. In this method, the reference yaw rate is adjusted based on 

the sideslip angle. By tracking this adjusted reference yaw rate, the 

controller maintains a small sideslip angle at the same time. This 

results in a smaller and simpler prediction model, thus, reducing 

the amount of online calculations. The proposed velocity estima- 

tion method and model predictive controller are implemented in 

real-time and tested on an AWD electric vehicle. The accuracy and 

performance of the estimation and control schemes are verified 

through several experiments conducted on various road conditions. 

This paper is organized into five sections. The proposed 

longitudinal/lateral state estimation method is provided in 

Section 2 where the stability of the time-varying estimator is also 

explored. The proposed model predictive control scheme is devel- 

oped in Section 3 . Road test experiments have been conducted on 

various road surfaces and the results of the state estimators and 

performance of the proposed model predictive control are pre- 

sented in Section 4 . Section 5 includes conclusions and some of 

the findings of this paper. 
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