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a b s t r a c t 

A corner-based velocity estimation approach is proposed which is used for vehicle’s traction and stability 

control systems. This approach incorporates internal tire states within the vehicle kinematics and enables 

the velocity estimator to work for a wide range of maneuvers without road friction information. Tire 

models have not been widely implemented in velocity estimators because of uncertain road friction and 

varying tire parameters, but the current study utilizes a simplified LuGre model with the minimum num- 

ber of tire parameters and estimates velocity robust to model uncertainties. The proposed observer uses 

longitudinal forces, updates the states by minimizing the longitudinal force estimation error, and pro- 

vides accurate outcomes at each tire. The estimator structure is shown to be robust to road conditions 

and rejects disturbances and model uncertainties effectively. Taking into account the vehicle dynamics is 

time-varying, the stability of the observer for the linear parameter varying model is proved, time-varying 

observer gains are designed, and the performance is studied. Road test experiments have been conducted 

and the results are used to validate the proposed approach. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Vehicle control systems require lateral and longitudinal states 

(velocities and forces) to control wheel slip, vehicle yaw rates, and 

side slip angles. Among these states, longitudinal state estimation 

makes major contributions into vehicle stability and traction con- 

trol. Recent literature has adopted two fundamental approaches 

regarding longitudinal velocity estimation. One is the modified 

kinematic-based approach [1] , which uses acceleration and the 

yaw rate measurements from an inertial measurement unit (IMU) 

and estimates the vehicle states employing stochastic estimators 

such as Kalman. This method does not employ a tire model, 

but instead usually utilizes GPS receiver to remove estimation 

bias. Bevly et al. proposed an estimation method in [2,3] using a 

single-antenna GPS and measurements from IMU. Integrating the 

yaw rate during turning, their method obtains the vehicle heading. 

The state estimation structure provided by Ryu and Gerdes in 
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[4] is a practical approach for determining vehicle states in which 

integration of the inertial sensors is performed when GPS data is 

unavailable. A full description of the planar vehicle dynamics is 

also implemented in their work to estimate lateral states using the 

yaw angle obtained by a GPS. However, these tire-free approaches 

rely on accurate GPS data which may be lost. It also imposes 

additional high costs on production vehicles. 

The other longitudinal velocity estimation method exploits an 

observer on vehicle’s longitudinal dynamics with the tire model. 

The advantage of this method is that it considers the tire capac- 

ities, although it still needs road conditions and tire parameters, 

which may vary significantly in different driving conditions. Using 

a linear Kalman filter, together with the fuzzy logic approach, 

Kobayashi et al. proposed a state estimator in [5] , which exhibits 

acceptable performance and low computational loads. To deal with 

the varying tire parameters and model uncertainties, tire slips are 

used to define a model scheduling in [6,7] . Nonlinear observers 

are studied on bicycle model in [8,9] for vehicle state estimation. 

An Extended Kalman filter (EKF) is employed for both longitudinal 

and lateral vehicle state estimation in [10,11] . EKF has also been 

used in [12,13] along with the Burckhardt model [14] to estimate 

the vehicle states and parameters of the tire model; an EKF with 

smooth variable structure is also utilized in [15] . Computational 
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complexities of the EKF justify using a reliable approach such as 

the unscented Kalman filter (UKF) [16,17] without any need for 

linearization in system dynamics. Nonlinear stochastic estimation 

capability of the UKF provides acceptable numerical efficiency 

compared with the EKF. Antonov et al. [18] employed an UKF 

for vehicle state estimation and provided a longitudinal/lateral 

velocity estimator at each corner. They utilized wheel torques, 

wheel speeds at each corner, and a simplified empirical Magic 

formula [19] as the tire model. However, this method needs the 

road condition and is sensitive to the effective tire rolling radius 

because it uses the slip ratio. Wielitzka et al. presented a method 

in [20] for the vehicle state estimation using UKF, but their 

approach employs tire model that needs road friction. 

On the other hand, to tackle the unknown road condition 

issue, other approaches estimate vehicle states as well as the road 

friction [21] . A sliding-mode observer is proposed in [22] based on 

the LuGre dynamic friction model to estimate longitudinal velocity 

as well as the friction limit. However, concurrent estimation of the 

road friction for low excitation and low-slip regions is challenging. 

Li et al. used nonlinear observer and the Dugoff tire model in 

[23] for the vehicle state estimation, but their method necessitates 

steering torque measurement for identification of the tire model’s 

friction parameter. A nonlinear model and a gain scheduling 

scheme is considered in [24] on the linear parameter-varying 

observer to cope with the road friction changes. Zhang et al. pre- 

sented a different version of the sliding-mode observer in [25] to 

estimate velocities using wheel speed sensors, braking torques and 

longitudinal/lateral accelerometer measurements. Their approach 

utilizes a sliding-mode observer for the velocity estimation and 

an EKF for estimation of the Burckhardt tire model’s friction 

parameter. 

In real situations, a tire model is highly dependent on the pres- 

ence of tire wear, variable tire parameters, inflation pressure, and 

uncertainties in road conditions. Therefore, developing an observer 

for the velocity estimation robust to road conditions and fairly in- 

sensitive to tire parameters is desirable. A time-varying Kalman 

observer is proposed in [26] for longitudinal force estimation us- 

ing wheel dynamics as well as longitudinal speed estimation at 

each corner with known and stochastic initial conditions and with- 

out road friction information, but utilizes derivatives of the LuGre 

model’s internal states. 

This study thus focuses on a method that treats the road condi- 

tion and acceleration measurement noises as uncertainties. Its ob- 

servations are also based on tire forces, which are accessible based 

on wheel dynamics using an unknown input observer [27] or a 

Kalman-based estimation [28] whenever measured (or estimated) 

effective torque is available. The proposed velocity estimator in this 

article uses a parameter-varying observer which can address high- 

slip conditions in different speed. 

This article has been divided into five sections. A longitu- 

dinal force estimator is proposed in Section 2 , which includes 

corner-based force estimation methodology using UKF. Suggested 

observer and stability analysis of the linear parameter-varying 

(LPV) error dynamics is provided in Section 3 . Section 4 con- 

tains simulation and experimental results used to verify the ap- 

proach in various maneuvers and road conditions with high and 

low longitudinal excitations. Finally, conclusions are provided in 

Section 5 . 

2. Longitudinal force estimation 

Longitudinal force estimation significantly contributes to vehi- 

cle stability control in the model-based velocity estimator and tire 

capacity identifier. Estimation of longitudinal forces independent 

from the road condition may be classified on the basis of wheel 

dynamics into the Kalman-based estimation [26,28,29] and the 

nonlinear observers [27,30,31] . 

2.1. Force estimation with the unscented Kalman filter 

The following describes the proposed UKF implementation for 

longitudinal tire force estimation. Julier et al. [16] proposed a de- 

terministic sampling approach, namely UKF, for state and param- 

eter estimation in discrete-time nonlinear systems and to over- 

come the linearization problem of the extended Kalman filter. 

Their method was modified later with augmented states in [32] . 

Proper capturing of nonlinearities contributed to the unscented 

transformation that defines the sample vectors P̄ ∈ R 

N ×2 N +1 around 

states where N is the length of the state vector. With some minor 

changes, UKF can also be employed for the parameter estimation 

instead of state estimation as provided in [33,34] for the vehicle 

parameter identification and in [28] for the longitudinal force esti- 

mation. The wheel dynamics at each corner yields: 

T̄ − R e F x − C b ω + �F = I w 

˙ ω , (1) 

where R e is the wheel effective radius, F x is the longitudinal tire 

force, ω is the wheel rotational velocity, I w 

is the wheel’s mo- 

ment of inertia, C b shows the wheel bearing’s linear viscous damp- 

ing, and �F represents uncertainties in the system including wheel 

torques, effective radius, and forces. The total effective torque on 

the wheels is shown by T̄ = T tr − T br , whereas traction and braking 

torques are denoted by T tr and T br correspondingly. For the pro- 

posed UKF-based force estimation, the effective torque T t provides 

input; the wheel speed ω is available and assumed to be the mea- 

surement y k , and the longitudinal force ˆ F x is treated as the param- 

eter ˆ p . The discrete-time parameter estimation problem then can 

be expressed as: 

p k +1 = p k + � 

p 

k 

y k = G(x k , p k ) + � 

m 

k , (2) 

where y k corresponds to nonlinear observation on p k and � 

p 

k 
, � 

m 

k 
represent process and measurement noises respectively. The esti- 

mated mean is updated as ˆ p mk = ˆ p k −1 and initialized by ˆ p 0 = E [ p] . 

The sample points P̄ k | k −1 = [ ̂  p mk ˆ p mk + ς 

√ 

�̄p k 
ˆ p mk − ς 

√ 

�̄p k 
] 

are generated around the estimated mean ˆ p mk of the parameters 

as in [32] . The square root factorization of the covariance ma- 

trix �̄p k 
can be obtained by Cholesky decomposition at each time 

step k . The error covariance matrix of the estimated parameter 

is initialized with �p 0 and updated by �̄p k 
= �p k −1 

+ ρ p 

k −1 
with 

incorporation of the process noise covariance ρ p 

k −1 
. Furthermore, 

ς = 

√ 

N + η1 is a scalar and represents the spread of sample points 

far from the mean values of random variables, where η1 is the 

compound scaling parameter as η1 = ε2 N − N and ε = 

√ 

3 /N . Af- 

terward, η2 = 2 is introduced to employ the prior information on 

the Gaussian distribution of the state/parameter. Generated sample 

points are supposed to be propagated within the system (wheel 

dynamics) as the function output Y k | k −1 = G(x k , P̄ k | k −1 ) with the 

conventional unscented transformation pattern. The output ˆ y k is 

achievable from the expected value [35] : 

ˆ y k = 

2 N ∑ 

i =0 

W 

m 

i Y i,k | k −1 . (3) 

The weighting coefficients are also defined by W 

c 
i 

= W 

m 

i 
= 

1 
2 (N + 

η1 ) for all sets i ∈ { 1 , 2 , . . . , 2 N} . These coefficients are W 

c 
0 

= 

η1 
N+ η1 

+ 1 − ε2 + η2 and W 

m 

0 
= 

η1 
N+ η1 

for i = 0 . The estimated func- 

tion output ˆ y k from (3) is then employed in the updated covari- 

ance matrices �y k y k 
, �p k y k 

as follows using the measurement noise 

covariance ρm 

k 
: 
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