
Mechatronics 43 (2017) 99–111 

Contents lists available at ScienceDirect 

Mechatronics 

journal homepage: www.elsevier.com/locate/mechatronics 

Virtual prototyping of emb e dde d control software in mechatronic 

systems: A case study 

� 

Alessandro Beghi a , Fabio Marcuzzi b , Paolo Martin 

a , Fabio Tinazzi c , ∗, Mauro Zigliotto 

c 

a Department of Information Engineering, University of Padova, Italy 
b Department of Mathematics, University of Padova, Italy 
c Department of Engineering and Management, University of Padova, Vicenza, Italy 

a r t i c l e i n f o 

Article history: 

Received 8 September 2016 

Revised 14 February 2017 

Accepted 17 March 2017 

Keywords: 

Co-simulation 

Mechatronic systems 

Embedded control 

a b s t r a c t 

The large majority of technological devices can be seen as the sum of components of heterogeneous na- 

ture (electrical, mechanical, thermal, software, etc.) so that their analysis and design calls for the use 

of tools from different engineering disciplines. Integration among the different tools is particularly rel- 

evant at control system design level, since it is at this stage that it is required to analyze the behavior 

of both each single component and the system as a whole, with different levels of detail. In this pa- 

per mechatronic systems are considered, that exhibit a strong interplay between mechanical and electrical 

components, and the issue of modeling and designing embedded control algorithms and architectures 

for such systems is addressed. In particular, an integrated virtual prototyping approach for analyzing the 

system behavior down to embedded software level is proposed, that can be used in a wide number of 

situations that can represent the actual real-world operational conditions of consumer products. This ap- 

proach can be used for system design (in particular at control systems level), embedded software design, 

and virtual testing so as to optimize and reduce the costs of late stage software development, physical 

prototypes, and their testing. The case study is based on some recently derived software tools that per- 

form the co-simulation of the firmware execution and the multi-physical controlled system dynamics. 

The actual control software implemented in the final product can be entirely developed and tested in- 

side the virtual prototype. To prove the validity and potentialities of the proposed approach, a real case 

study is presented, regarding a very common, though complex to simulate, mechatronic system such as 

an electric sliding gate. It turns out that the proposed environment goes beyond hardware-in-the-loop 

tools, since it does not require the use of specific hardware (the hardware itself is simulated in detail) 

but allows to analyze in detail the status of the microprocessors and peripherals at arbitrary time-scales 

and allows the designer to study at the earliest design stages the dynamics between the multi-physical 

controlled system and the firmware, without committing to a given hardware structure. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the design of advanced control systems it is common prac- 

tice to make extensive use of Computer Aided Control Systems De- 

sign (CACSD) software tools. At a very basic level, such tools allow 

to simulate the relevant system dynamics, for a first assessment 

of the different control strategies. However, when very complex 

systems are to be controlled, more sophisticated, integrated tools 

come into play. Such tools are at the core of what is sometimes 

called the simulation-centric process. In many cases new compo- 

� This paper was recommended for publication by Peter Hehenberger. 
∗ Corresponding author. 

E-mail addresses: alessandro.beghi@unipd.it (A. Beghi), fabio.marcuzzi@unipd.it 

(F. Marcuzzi), paolo.martin@unipd.it (P. Martin), fabio.tinazzi@unipd.it (F. Tinazzi), 

mauro.zigliotto@unipd.it (M. Zigliotto). 

nents are modeled in software first [1] . The designer runs sim- 

ulations of a new component in conjunction with models of the 

rest of the system to study the behavior of the overall system and 

to optimize the algorithms and routines used in the new compo- 

nent before building any physical prototype. This type of applica- 

tion is commonly referred to as a co-simulation : all parts of the 

system, both continuous-time processes and discrete-time events, 

are being simulated in software [2,3] . The resulting virtual proto- 

types are then validated in a Hardware-In-the-Loop (HIL) applica- 

tion that includes the effects of the hardware-system interaction 

(sampling, time lags, etc.). HIL tools allow the testing of new hard- 

ware components and prototypes while communicating with soft- 

ware models that simulate the rest of the physical system. The 

physical components being tested respond to the electrical signals, 

computed by the simulation model running on a computer, as they 

were operating in the real system, since these signals are gener- 

http://dx.doi.org/10.1016/j.mechatronics.2017.03.004 

0957-4158/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.mechatronics.2017.03.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechatronics
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechatronics.2017.03.004&domain=pdf
mailto:alessandro.beghi@unipd.it
mailto:fabio.marcuzzi@unipd.it
mailto:paolo.martin@unipd.it
mailto:fabio.tinazzi@unipd.it
mailto:mauro.zigliotto@unipd.it
http://dx.doi.org/10.1016/j.mechatronics.2017.03.004


100 A. Beghi et al. / Mechatronics 43 (2017) 99–111 

ated compatibly with those generated by the real controlled sys- 

tem. Additionally, HIL systems are commonly used for fault anal- 

ysis studies (shorted/open circuit signals, etc.), such as the un- 

intentional islanding in distribute energy resources in [34] , relia- 

bility (endurance) tests of new components in large plants [36] , 

and the occurrence of anomalous behaviors in complex mechani- 

cal systems [16] . To setup a simulation-centric control system de- 

sign project, there are therefore some basic, preliminary steps to 

be taken, namely: 1) derivation of a detailed mathematical model 

of the system to be controlled, as the basis for the application 

of modern, model-based control system design techniques, and 2) 

definition of some integration strategies, that allow the actual co- 

simulation of the different software components, as well as the 

coupling with hardware components via the HIL tools. 

Nowadays, the approach described above is challenged by the 

widespread appearance of embedded systems, that is complex, 

software-rich products that have to manage a very large and het- 

erogeneous set of constraints coming from the physical world 

[4] . In fact, traditional development approaches are often mono- 

disciplinary in style, in that separate mechanical, electronic and 

software engineering groups handle distinct aspects of product de- 

velopment and often do that in sequence. This is commonly re- 

ferred to as the main issues in the development process of a 

complex system [6,7] . However, cross-cutting system-level require- 

ments that cannot be assigned to a single discipline, such as per- 

formance and dependability, can cause great problems, because 

their impact on each discipline is exposed late in the develop- 

ment process, usually during integration. Embedded systems de- 

sign, in which the viability of the product depends on the close 

coupling between the physical and computing disciplines, there- 

fore call for a more multidisciplinary approach and the develop- 

ment of new tools. Some examples of integration of physical and 

computational systems are reported in [8,9] . They both refer to au- 

tomotive applications, namely the control of an electronic throt- 

tle and a gasoline fuel pump. The validity of the co-simulations 

are proven by fair comparisons between simulated and experimen- 

tal results. However, they are carried out by using several simu- 

lation tools (Saber, CoMET, Simulink) and different programming 

languages (C/C++, Matlab). 

In the light of the previous considerations, it appears that 

simulation-based design processes have to meet new requirements, 

with stronger emphasis on the interaction among the various sys- 

tems components at the lowest possible level, so as to include ex- 

tensive validation of the embedded software component. This pa- 

per proposes an integrated and extensive design approach, that ex- 

plicitly takes into consideration such requirements. In particular, 

the integrated virtual prototyping environment can be used for an- 

alyzing the system behavior down to embedded software level in a 

wide number of situations that can represent the real-world oper- 

ational conditions of devices. Such environment can be used for 

system design (in particular at control system level), embedded 

software design, and virtual testing so as to optimize and reduce 

the costs of late stage software development, physical prototypes, 

and their testing. 

The aforementioned higher degree of integration is achieved 

by using new software tools that allow to couple dynamical sim- 

ulation of multi-physics systems with simulation of the embed- 

ded control software running on microcontrollers/DSPs (usually 

called “control firmware” by the designers of consumer products 

with embedded microcontrollers onboard). This capability consti- 

tutes a step forward with respect to present day available tech- 

nologies, where firmware development tools exist, but yet, they 

are not directly integrated in the dynamical systems simulation 

environments. Notably, the proposed virtual prototyping environ- 

ment makes use of an equation modeling framework, CfL, based on 

open-source software languages, Latex and Python [10] . Therefore, 

engineers with different backgrounds are able to work on the same 

platform, describing the system with mathematical equations that 

are automatically translated into a simulation model of the system. 

From the control design point of view, the approach enabled by the 

use of the framework CfL eases the communication between engi- 

neering groups, [4,5] . The model is written in Python, which is be- 

coming a standard for scientific/engineering computing. Moreover, 

Python is very well tied with the C language, which represents 

the standard for microcontrollers/DSPs programming. Existing tools 

available for developing embedded control software, although at 

an advanced level of user-friendliness and applicability, are based 

on proprietary languages (the user cannot freely exchange models 

between different tools), domain-specific, mono-disciplinary (and 

rather unknown to non-specialists) and sometimes far from C lan- 

guage, see e.g. Matlab/Simulink, dSpace [28] etc. A notable tool 

is Modelica that embodies much of the spirit of the CfL equation 

modeling framework. Its programming language (C++) requires a 

sophisticated compiler to translate the textual model into an exe- 

cutable simulation, problem partially mitigated by PyModelica. An 

integration of the CfL equation modeling framework with these ex- 

isting tools is reasonably possible, but out of the scope of this pa- 

per. The same applies to a rigorous assessment of whether it would 

be better a textual modeling language like LaTeX or visual model- 

ing tools. 

In the proposed μLab environment, an alias/bindings architec- 

ture is used to integrate in a single simulation model all the im- 

plementations done during the design cycle of the control sys- 

tem, from the initial control algorithm prototype to the control 

firmware installed in the final product. These implementations are 

created and stored by the user in Project Dictionaries [11] . The μLab 

co-simulation engine permits a quite general interoperability of 

firmware and Python scripts at runtime. This feature is exploited 

in the co-simulation of the control logic to achieve a better effi- 

ciency in prototyping of the control algorithms and a smooth tran- 

sition from the early prototype to the final product. At the earliest 

stages, the μLab environment allows the designer to study at sim- 

ulation level the dynamics between the multi-physical controlled 

system and the firmware. During the final refinements, an exact 

model of the microcontroller can be included in the co-simulation. 

These advantages are important in the development of advanced 

control algorithms, (e.g. Model Predictive Control (MPC) [12–15] ). 

These algorithms represent a challenge for the integrated simula- 

tion architecture and they usually require a keen use of the micro- 

processors resources. 

This paper presents a real case study, namely, the virtual proto- 

typing and embedded control software design for an electric slid- 

ing gate, a very common and quite complex to simulate mecha- 

tronic system. The paper is organized as follows. In Section 2 , 

the adopted co-simulation software is introduced. In Section 3 the 

modeling of the electrical gate is derived, considering its various 

components (electric motor, mechanical transmission, and electri- 

cal motor drive). In Section 4 the experimental and co-simulation 

results are discussed, while in Section 5 the results are compared 

with those obtainable with state-of-the-art tools. Conclusive re- 

marks are reported in Section 6 . 

2. The adopted co-simulation environment 

A mechatronic system, i.e. a mechanical system whose opera- 

tions are controlled by electrical and electronic equipments [32] , 

can be simplified as sketched out in Fig. 1 . The electrical parts 

are the peripherals, such as the electric motors, related converters, 

and sensing devices, i.e. the group of sensors and transducers with 

their conditioning circuits, which can also be considered part of 

the electric area. The sensor interface of Fig. 1 describes the soft- 

ware part related to the measurement information acquisition. 



Download English Version:

https://daneshyari.com/en/article/5007097

Download Persian Version:

https://daneshyari.com/article/5007097

Daneshyari.com

https://daneshyari.com/en/article/5007097
https://daneshyari.com/article/5007097
https://daneshyari.com

