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a b s t r a c t

The Fourier transform (FT), the nonlinear least-squares algorithm (NLSA), and eigenvalue decomposition
algorithm (EDA) are used to evaluate the phase field in depth-resolved wavenumber-scanning interfer-
ometry (DRWSI). However, because the wavenumber series of the laser’s output is usually accompanied
by nonlinearity and mode-hop, FT, NLSA, and EDA, which are only suitable for equidistant interference
data, often lead to non-negligible phase errors. In this work, a compressed-sensing method for DRWSI
(CS-DRWSI) is proposed to resolve this problem. By using the randomly spaced inverse Fourier matrix
and solving the underdetermined equation in the wavenumber domain, CS-DRWSI determines the
nonuniform sampling and spectral leakage of the interference spectrum. Furthermore, it can evaluate
interference data without prior knowledge of the object. The experimental results show that
CS-DRWSI improves the depth resolution and suppresses sidelobes. It can replace the FT as a standard
algorithm for DRWSI.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Depth-resolved wavenumber-scanning interferometry (DRWSI)
is an extension of the traditional phase-shifting technique [1]. It
uses phase information of the Fourier transform in the frequency
domain to measure three-dimensional profiles and displacements
inside a structure with a high precision [2,3]. In general, three
kinds of algorithms are employed for data evaluation in DRWSI:
the Fourier transform (FT) [2], the nonlinear least-squares algo-
rithm (NLSA) [4,5], and the eigenvalue decomposition algorithm
(EDA) [6]. However, because the wavenumber series of laser’s out-
put in DRWSI is usually accompanied by nonlinearity and mode-
hop [7], FT, NLSA, and EDA, which are only suitable for equidistant
interference data, often lead to non-negligible phase errors.

To address this problem, two solutions have been reported: (1)
the linear interpolation of the wavenumber series [8] and (2) the
random-sampling Fourier transform (RSFT) in the wavenumber
domain [7]. Interpolation is equivalent to low-pass filtering and
thus results in the loss of the high frequencies in the spectrum.
Moreover, the deviation of the interpolated data from the mea-
sured data can easily produce distortion in the spectrum. The RSFT
yields less spectrum distortion than linear interpolation but has
two weaknesses: (i) the spectral leakage of the RSFT is the same
as that of the FT, which makes the depth resolution and the phase

accuracy lower than those of NLSA and EDA; and (ii) as the
wavenumber scans with the mode-hop, the RSFT is equivalent to
convolute multiple windows. Consequently, the sidelobes in the
amplitude spectrum are augmented, which often suppresses the
mainlobes [7,9].

In 2006, Candès et al. proposed the compressed-sensing theory
(CST) for reconstructing a signal in sub-Nyquist sampling if the
signal exhibits sparsity or compressibility [10]. In DRWSI, the
sampled interference signal in the wavenumber domain appears
as a low-dimensional non-sparse vector owing to the limited range
of wavenumber scanning, whereas the interference spectrum after
using DTFT (Discrete-time Fourier Transform) is a high-
dimensional sparse vector. The key for evaluating DRWSI data is
obtaining the interference spectrum from the sampled interference
signal. Therefore, the problem to be solved in DRWSI is coincident
with the topic of CST.

In this work, a compressed-sensing theory for DRWSI (CS-
DRWSI) is presented to replace the FT while improving the depth
resolution and suppressing the sidelobe, when the nonlinearity
and mode-hop of wavenumber series occur. The experimental
results show that the CS-DRWSI can replace the FT as a standard
algorithm for data evaluation in DRWSI. The remaining part of this
paper is organized as follows. In Section 2, an optical setup of
DRWSI is introduced. In Section 3, the compressed-sensing theory
for DRWSI is presented. In Section 4, an experiment, in which the
wavenumber series scanned nonlinearly and mode-hop, was done

http://dx.doi.org/10.1016/j.optlastec.2017.08.003
0030-3992/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: shlxie@gdut.edu.cn (S. Xie).

Optics and Laser Technology 98 (2018) 229–233

Contents lists available at ScienceDirect

Optics and Laser Technology

journal homepage: www.elsevier .com/locate /opt lastec

http://crossmark.crossref.org/dialog/?doi=10.1016/j.optlastec.2017.08.003&domain=pdf
http://dx.doi.org/10.1016/j.optlastec.2017.08.003
mailto:shlxie@gdut.edu.cn
http://dx.doi.org/10.1016/j.optlastec.2017.08.003
http://www.sciencedirect.com/science/journal/00303992
http://www.elsevier.com/locate/optlastec


to verify the CS-DRWSI. Finally, the conclusion and discussion are
provided in Section 5.

2. Optical setup

As shown in Fig. 1, the optical setup employed for DRWSI was
based on a Michelson interferometer. The light source was a
distributed-feedback laser diode (LD-0860-0150-DFB-1) driven
by a laser controller (ILX Lightwave Co., LDC-3724 C). A CCD cam-
era (VDS Vosskuhler GmbH, 1280 � 1024) was used to acquire a
wavenumber-domain interferogram. An optical wedge, whose
optical path difference (OPD) was set as K120 = 9.06 mm at
x = 0 mm and y = 0 mm, served two functions: providing a refer-
ence plane and monitoring the output of the laser [7].

3. Compressed-sensing theory for DRWSI

The light reflected from multiple surfaces S1, S2, . . ., and SM in a
stack forms interferograms [7], as follows:

Iðx; y;kÞ ¼
XM
p¼1

XM
q¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ipðx; yÞ � Ipðx; yÞ

q
� cos½2p �Kpqðx; yÞ � ðk� k1Þ þ /pqðx; yÞ�

/pqðx; yÞ ¼ 2 � k1 �Kpqðx; yÞ þ /pq0ðx; yÞ; ð1Þ
where vector k = [k1, k2, . . ., kN]T is the wavenumber series of the
laser’s output, N is the total number of frame index acquired by a
camera; Ip (p = 1, 2, . . .,M) is the reflected light intensity from Sp;
Kpq and upq0 (p = 1, 2, . . .,M, q = p + 1) are the optical path difference
and the initial phase difference between Sp and Sq, respectively; and
(x, y) are the spatial coordinates, which are omitted in the following
text below.

In DRWSI, the depth-resolved phase maps /pq(x, y) are deter-
mined from the interference spectrum [7,8]. To evaluate the inter-
ference spectrum, an inverse Fourier transform of the interference
signal is written in a matrix form:

IðkÞ ¼ F̂ �~Iðf Þ; ð2Þ
where,

IðkÞ ¼ Iðk1Þ Iðk2Þ . . . IðkNÞ½ �T1�N ;

~Iðf Þ ¼ conjð~Iðf 1ÞÞ conjð~Iðf 2ÞÞ . . . conjð~Iðf LÞÞ
� �H

1�L;

F̂ ¼ f̂ 1 f̂ 2 . . . f̂ L
h i

N�L
;

f̂ l ¼ 1 exp½�j � 2p � f l � ðk2 � k1Þ� . . . exp½�j � 2p � f l � ðkN � k1Þ�½ �H;
l ¼ 1;2; . . . ; L:

ð3Þ
Here, the superscripts T and H represent the transposition and
conjugate transpose, respectively; ‘‘conj” is the conjugate operator;
f = [f1, f2, . . ., fL]T is the frequency vector in the Fourier space; L is the
number of data points in the frequency domain; j is the imaginary

unit; F̂ is the partial inverse Fourier matrix, which connects the
interference signal I(k) and the interference spectrum ~Iðf Þ Notably,
because of the limited wavenumber scanning range Dk, the dimen-

sion of F̂ meets the condition of N < L.
In Eq. (2), the interference spectrum ~Iðf Þ via a recorded interfer-

ence signal I(k) is reconstructed using the ‘1minimization as
follows,

min
XL

i¼1

jRe½~Iðf iÞ�j þ jIm½~Iðf iÞ�j
n o

subject to IðkÞ ¼ F̂ �~Iðf Þ

8>><
>>: ; ð4Þ

where the symbols ‘‘Re” and ‘‘Im” represent the real and imaginary
parts of a complex number, respectively.

The constraint of Eq. (4) is rewritten as the real and imaginary
parts:

IðkÞ ¼ fReðF̂Þ � Re½~Iðf Þ� � ImðF̂Þ � Im½~Iðf Þ�g þ j � fReðF̂Þ � Im½~Iðf Þ�
þ ImðF̂Þ � Re½~Iðf Þ�g: ð5Þ

Because the interference signal I(k) is presented as the real num-
bers, the Eq. (5) is converted into the field of real number as follows,

ReðF̂Þ � Re½~Iðf Þ� � ImðF̂Þ � Im½~Iðf Þ� ¼ IðkÞ
ReðF̂Þ � Im½~Iðf Þ� þ ImðF̂Þ � Re½~Iðf Þ� ¼ 0

(
: ð6Þ

After the Eq. (6) is reformulated as a matrix equation, the Eq. (4)
becomes

min
XL

i¼1

jRe½~Iðf iÞ�j þ jIm½~Iðf iÞ�j
n o

subject to
IðkÞ
0

� �
2N

¼ ReðF̂Þ �ImðF̂Þ
ImðF̂Þ ReðF̂Þ

" #
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Imð~Iðf ÞÞ

" #
2L�1

8>>>>><
>>>>>:

:

ð7Þ

Fig. 1. Optical setup. TEM is a temperature module; LD is a laser diode; LC is a laser
controller; PC is a personal computer; L is a convex lens; OW is an optical wedge;
BSC is a beam-splitter cube; CCD is a CCD camera; S1, S2, S3, . . ., SM are the measured
surfaces in a stack.

Fig. 2. Wavenumber series k, k1, and k2, where k1 has a narrow scanning range, and
k2 scans with mode-hop.
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