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a b s t r a c t

In this work, we address the phase ambiguity in white light spectral interferometry. This ambiguity pre-
vents one from obtaining the refractive index over a broad spectral range with high accuracy. We first
determine the error when the refractive index is fitted to a linear combination of power functions. We
demonstrate that the error is proportional to wavelength and independent of sample thickness. We show
how to reduce the error over the entire spectral band by measuring the spectral phase at the output of the
interferometer for some suitable wavelengths as a function of sample orientation.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In optics, dispersion refers to the dependence of the optical
properties of a material or device upon wavelength. Dispersion
concerns any phenomena related to refraction and affects the
propagation of pulses in matter. Accurate knowledge of dispersion
is crucial in many fields of science and industry, such us optical
design, optical imaging, optical communication, laser physics,
low-coherence metrologies, and ultrafast optics. Additionally, dis-
persion can be used to obtain information about other physical
properties, and for the development of theoretical and numerical
physical models. From the pioneering work of Sainz and co-
workers [1–3], the analysis of interference of incoherent light in
the spectral domain has been shown to be a powerful tool to mea-
sure material dispersion over a broad spectral range [4–12]. In
white light spectral interferometry (WLSI), mainly two different
parameters have been calculated to quantify dispersion: the refrac-
tive and the group index. Group index is directly determined by the
derivative of the phase in the spectral domain [10], once the thick-
ness of the sample and the path difference between the interfer-
ometer arms are known. Alternatively, the value of the so-called
‘‘equalization wavelength” can be measured as a function of the
difference of path length in the interferometer arms [11], with
the same goal. The recovery of refractive index is much more com-
plex, however, because of a 2p phase ambiguity arising from the
fact that the inverse trigonometric functions are multi-valued.

Several authors have tried to work around this ambiguity by
assuming that the refractive index verifies a given dispersion rela-
tionship, and fitting the phase accordingly [3,4,7,8]. Specifically, in
[3] and [7], authors fitted the refractive index to either a quadratic
or a cubic polynomial in wave number, respectively, while the
authors in [4] used a quadratic polynomial in squared wave num-
ber; on the other hand, a Sellmeier equation was considered in [8].
In each case, the similitude of the fitted and real refractive indices
was checked by considering materials of known refractive index.
However, in a practical case, with unknown refractive indexes,
how can the accuracy of the measurements be determined?
Indeed, is it possible to estimate?

In this paper, we consider the limitations of refractive index
retrieval by WLSI that arise from phase ambiguity. After reviewing
the origin of the phase ambiguity, we discuss the error in refractive
index due to phase fitting, and arrive at an analytical expression
that depends on the actual refractive index and on the functional
form of the fit. Thus, it is shown theoretically and experimentally,
how the phase ambiguity can be overcome by calculating sepa-
rately, and with low resolution, the refractive index at given
wavelengths.

2. The phase ambiguity

In white light spectral interferometry, the output of a Michelson
or Mach–Zehnder interferometer illuminated with a broadband
source is decomposed into its spectrum by a suitable spectrometer
equipped with an array detector. For the dispersion measurement,
a sample of thickness d is placed in one arm of the interferometer.
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In a well-compensated interferometer, the irradiance at the detec-
tor as a function of wave number, r = 1/k, can be written as:

IðrÞ ¼ I0ðrÞ þ VðrÞ cosuðrÞ ð1aÞ

uðrÞ ¼ 4prðdn� d� LÞ ð1bÞ
where I0 is the background irradiance, V is the visibility function, u
is the optical phase difference at the output of the interferometer, n
is the refractive index, and L is the difference in length between the
interferometer arms. For simplicity, in Eq. (1b) we have assumed
that the refractive index of air is unity. In the literature, we can find
different methods to extract the phase from irradiance measure-
ments [13–15]. However, since the arccosine function is multi-
valued, we only obtain its principal value between �p and +p for
each r. After applying an unwrapping procedure, we obtain a con-
tinuous phase with a minimum in the interval [0, 2p] (see Fig. 1).
This phase, up, differs from that given in Eq. (1b) by an even multi-
ple of p, that means:

up þ 2kp ¼ 4prðdn� d� LÞ ð2Þ
where k 2 z is the interference order. To retrieve the refractive
index, we must first measure d and L, and find the value of the inter-
ference order k. Assuming that d and L are determined, we can sum
4prðdþ LÞ on both sides of Eq. (2) and incorporate this term into a
new phase variable, u’, to rewrite the equation as:

u0 ¼ 4prdn� 2kp ð3Þ
In summary, because k is unknown, the phase measurement

alone is not sufficient to estimate the refractive index unless some
assumptions are made, as will be shown in the next section.

3. Applying a dispersion relation

As stated earlier, some authors have tried to retrieve the refrac-
tive index by assuming that n verifies some dispersion relationship,
given for example by the Cauchy or Sellmeier formulas, or by sim-
ply considering a Taylor expansion of the refractive index about a
suitable value n0 ¼ nðr0Þ. The only condition on the functional
form of the refractive index is that it must not contain a term
inversely proportional to wave number. In this case, the unique
term in the right hand side of Eq. (3) which is independent of r
is 2kp. In that case, the phase can be fitted to simultaneously
obtain the refractive index and the value of k. Hereinafter, we con-
sider that the refractive index can be written as a linear combina-
tion of power functions with m different real exponents.1

Therefore, the phase is fitted as:

u0ðrÞ ffi u0
f ðrÞ ¼

Xmþ1

j¼1

ajrpj ð4Þ

In this equation, the first power p1 is taken to be zero because of
the constant term 2kp in Eq. (3), while the other m terms are cor-
related to the refractive index. In general, there will be some differ-
ence between the real phase, u’, and the fitted phase, u0

f . Let us call
this difference Du(r). If we substitute u’ by u0

f in Eq. (3), we get a
fitted index nf:

nf ¼
u0

f þ 2kp
4pdr

¼
Xmþ1

j¼2

aj
4pd

rpj�1: ð5Þ

Furthermore, we can estimate of the interference order k as
�a1/2p. On the other hand, the real refractive index can be
obtained directly as n ¼ ðu0 þ 2kpÞ=ð4prdÞ ¼ ðu0

f þ Duþ 2kpÞ=
ð4prdÞ. Then, the difference between real and fitted refractive
index is:

Dn ¼ n� nf ¼ a1 þ Du
2p

þ k
� �

1
2dr

¼ a1 þ Du
2p

þ k
� �

k
2d

: ð6Þ

Under normal circumstances, the phase will be well-fitted by
Eq. (4), so Du? 0. Hence, hereinafter we neglect Du. In this situ-
ation, the error is zero only if the estimation of k is exact, that is,
if the first coefficient of the fitted phase verifies a1 = �2kp. How-
ever, this condition is not usually fulfilled, and so Dn – 0.

To estimate the value of the coefficient a1, we consider at this
point a typical fitting by applying the least-squares method. As it
is shown in the Appendix, a1 differs from �2kp by a quantity pro-
portional to d. Therefore, the error in refractive index is inversely
proportional to the wave number, that is,

Dn ¼ B=r ¼ Bk ð7Þ
where B is a constant. The dependence of Dn with k or r is related
to an error in k, as can be easily shown by deriving Eq. (3) and con-
sidering no error in phase: Dn ¼ Dk=ð2drÞ. More surprisingly, B is
not only independent of r, but it is also independent of the sample
thickness d [the sum a1=2pþ k in Eq. (6) scales with d, as it is shown
in the Appendix]. This is unfortunate because we could otherwise
try to infer the value of k by using samples of different thicknesses.

Eq. (7) can be modified by applying the condition that k is an
integer, so we can round the coefficient a1/2p to the nearest inte-
ger. In this case, the refractive index error is,

Dn ¼ floorð2BdÞ=ð2drÞ ð8Þ
The rounding function, floor, is zero for arguments less than 0.5,

so this expression will give the correct refractive index for a suffi-
ciently small sample thickness. However, as the thickness
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Fig. 1. Typical spectra detected in WLSI showing well-resolve fringes (a) and the
phase extracted before (b) and after (c) phase unwrapping.

1 This excludes at first sight the Sellmeier equation, but this one can be well
approximated to a sum of power functions by performing a Taylor expansion about a
particular wave number
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