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Abstract

We consider the numerical simulation of buoyancy-affected, incompressible turbulent flows using a stabilized finite-

element method. We present an approach which combines two domain decomposition methods (DDM). Firstly, we

apply a DDMwith full overlap for near-wall modelling, which can be interpreted as an improved wall-function concept.

Secondly, a non-overlapping DDM of iteration-by-subdomains-type for the parallel solution of the linearized problems

is employed. For this scheme, we demonstrate both the accuracy for a benchmark problem and the applicability to real-

istic indoor-air flow problems.
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1. Introduction

Turbulent flows driven or significantly affected by buoyancy occur in a variety of problems including

building ventilation, cooling of electrical equipment, and environmental science, cf., e.g., [15,6]. The funda-

mental mathematical model are the non-isothermal, incompressible Navier–Stokes equations. Their solu-

tion can become turbulent (and hence computationally infeasible), if a critical parameter, e.g., the

Reynolds number or the Rayleigh number, becomes too large.
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As a remedy, so-called turbulence models are used, which are suitably modified Navier–Stokes equations

whose solutions are (in some sense) close to those of the Navier–Stokes equations, but which can be com-

puted at reasonable costs. In this paper, two different types of turbulence models are considered. Firstly, we

employ the so-called k/� model which is one of the most widespread turbulence models for industrial appli-

cations. It is a statistical turbulence model which was conceived to approximate the statistically averaged
solution of the Navier–Stokes equations, see [4]. Secondly, we consider large-eddy simulation (LES). The

aim of LES is to approximate the random motion of the large-scale flow structures (spatial averages) of the

solution, see [28,7], and also [5,25] for non-isothermal LES. LES is much closer to the Navier–Stokes equa-

tions than a statistical turbulence model like k/�.
Despite the fast increase in available computer power and the use of a turbulence model, the numerical

solution of turbulent flow problems is still very expensive and may take several days or even weeks for

large-scale 3D problems in complex geometries. One major problem is that a large number of grid points

is needed to accurately resolve the solution near solid walls, where the solution often exhibits sharp gradi-
ents, called boundary layers.

Dedicated to this problem, the present paper describes a solution strategy which significantly reduces

computational costs but whose results are also fairly good in accuracy for the applications in mind.

Although the devised method is described for a specific application (i.e., buoyancy affected non-isothermal

turbulent air flows), the key idea can be applied to a large class of wall-bounded (turbulent) flows including

atmospheric and oceanographic flows, two-phase liquid gas flows and multifluid/multiphase flows with

combustion, as described in the conclusion.

The key idea is a combination of two steps: Firstly, splitting off the boundary layer region, and secondly,
applying an improved wall-function concept there. In the first step, the boundary layer region is split off

using a fully overlapping domain decomposition method, following an idea devised by [30,32]: The flow

problem is divided into a global (interior) problem and a problem in the near-wall region, called boundary

layer problem.

The aim of [32] was to solve the same equation in both domains on different computational grids, i.e., a

relatively coarse grid for computing the global solution and a fine grid for solving the boundary layer prob-

lem are used. However, for complex 3D problems, the computational costs of both subproblems are nearly

of the same order of magnitude. Therefore, in the second step a much simpler computational model for the
near-wall region is applied, called boundary-layer equations, which are essentially a system of coupled non-

linear ordinary differential equation. This reduces the computational costs and facilitates the implementa-

tion of the boundary layer problem significantly. From the engineering point of view, this approach can be

formulated as an improved wall-function model, which accounts for effects of thermal stratification in the

boundary layer, see also [24,17]. Thus, the strategy of the present paper is to couple different differential

equations in both domains, cf. [16].

After splitting off the near-wall region, the boundary layer solution is needed only for providing the

boundary conditions of the global (interior) flow problem. The remaining problem is then to solve the non-
linear interior problem. After semidiscretization in time and a subsequent decoupling and linearization of

the arising nonlinear, highly coupled problem, the iterative process requires the fast solution of linearized

Navier–Stokes problems and of advection–diffusion-reaction problems. These subproblems are discretized

using stabilized FEM together with a shock-capturing technique, cf. [18], In order to parallelize the method,

for the linearized problems we apply an iterative substructuring technique which couples the subdomain

problems via Robin-type transmission conditions, see [26,22].

The paper is organized as follows: First we describe the mathematical model, i.e., the non-isothermal

Navier–Stokes equations with a generic turbulence model (Section 2). In Section 3 we present a full-over-
lapping DDM for splitting off the near-wall region. We apply the k/� turbulence model to the global prob-

lem and describe the simplified boundary layer problem with its simple, but nevertheless physically quite

sophisticated algebraic turbulence model. In Sections 4–6 the numerical solution strategy for the global flow
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