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a b s t r a c t 

The problem of restoration of a high-resolution image from several degraded versions of the same scene (decon- 
volution) has been receiving attention in the last years in fields such as optics and computer vision. Deconvolution 
methods are usually based on sets of images taken with small (sub-pixel) displacements or slightly different focus. 
Techniques based on sets of images obtained with different point-spread-functions (PSFs) engineered by an opti- 
cal system are less popular and mostly restricted to microscopic systems, where a spot of light is projected onto 
the sample under investigation, which is then scanned point-by-point. In this paper, we use the effect of conical 
diffraction to shape the PSFs in a full-field macroscopic imaging system. We describe a series of simulations and 
real experiments that help to evaluate the possibilities of the system, showing the enhancement in image contrast 
even at frequencies that are strongly filtered by the lens transfer function or when sampling near the Nyquist 
frequency. Although results are preliminary and there is room to optimize the prototype, the idea shows promise 
to overcome the limitations of the image sensor technology in many fields, such as forensics, medical, satellite, 
or scientific imaging. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Restoration of a high-resolution image from one or more low- 
resolution or degraded versions is an interesting problem that has been 
receiving attention in the last years in the fields of optics, image process- 
ing and computer vision. This process has been called many times super- 

resolution image reconstruction , term still widely used in the field of image 
processing, but which has been questioned lately, as it properly refers 
to those optical techniques aimed at transcending the diffraction limit. 
Some authors make the distinction between geometrical super-resolution 
for the former, and refer to the later as optical (or sometimes true ) super- 
resolution. 

In any case, in this paper we refer to those techniques aimed at im- 
proving the spatial resolution (contrast and details in the high frequen- 
cies) in an image which has been degraded by the optical system, such 
as slight defocus, aperture diffractions, blurring due to motion, or sim- 
ply due to the optical transfer function (OTF) of the imaging lens. These 
techniques are of utmost interest in many different fields, ranging from 

surveillance, forensic or medical applications to satellite or scientific 
imaging, and their aim is to overcome the limitations of the image sen- 
sor technology [1] . 

There are two different approaches: using a single image and using 
multiple images. Single-image techniques are usually based on some 
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kind of interpolation or kernel-regression (see, for instance [2] ), al- 
though lately some alternatives using example-based learning have been 
reported. A complete survey of these techniques is out of the scope of 
this paper, but there are many excellent reviews such as van Ouwerk- 
erk’s [3] . Nevertheless, single-image methods tend to either generate 
unpleasant results or be computationally expensive mostly due to the 
lack of input images [4] . 

Multi-image techniques, on the other hand, attempt to generate the 
high-resolution image by combining the information given by a set of de- 
graded images of the same scene provided those images are shifted by a 
sub-pixel distance or are taken under different optical conditions. These 
different conditions result in different Point Spread Functions (PSFs). 
References [1,5] include excellent reviews of these techniques. Most of 
the research in this area focuses on the first category, as the motion 
can be easily obtained either mechanically or due to vibration of the 
camera or motion of the object being examined. As examples of this 
line of research Lin et al. [6] propose an algorithm to obtain the en- 
hanced image from a set of images degraded only by optical blur and 
noise, while preserving high-frequency details; Li et al. [7] propose a 
multi-kernel regression learn-based method; Sajjad et al. [8] use a set 
of pre-defined kernels and an edge-directed algorithm for cost-efficient 
restoration; Shi et al. [9] propose two methods using small-kernels for ef- 
ficient image processing in a micro-scanning imaging system; Rav-Acha 
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and Peleg [10] propose a method that uses several images with motion 
blur in different directions to restore the original, just to name a few. 

As this problem is ill posed, errors in the estimation of the kernels re- 
sult in poor quality images. Therefore, some proposals include adaptive 
methods such as the one by Maiseli et al. [4] , in which the regulariza- 
tion term updates accordingly to local image features, or estimate the 
PSF directly from the input image. These are called blind methods, and 
good examples are described in [11] and [12] , both for single-image 
techniques; and [13] where the authors propose a blind method using 
multiple images obtained with a system employing adaptive optics. 

Nevertheless, techniques based on sets of images obtained with dif- 
ferent PSFs but no motion are much less popular and mostly restricted to 
microscopic systems where it is possible to engineer the shape of the illu- 
minating point source, and therefore, scan the specimen under examina- 
tion with different PSFs. This approach leads to “true ” super-resolution 
techniques, as reported by Simon and Haeberlé in [14] for confocal flu- 
orescence microscopy combining laterally interfering focused beams, or 
Rosen et al . in [15] or Caron et al. in [16] for standard confocal mi- 
croscopy using conical diffraction. 

In this paper, we use the concept of PSF shaping and apply the same 
idea on a novel full-field imaging system. The optical setup is based coni- 
cal diffraction too, but it is mounted on the acquisition branch of the im- 
age sensor, and can be fit inside a standard F-mount. In [17] we reported 
the theoretical background and described the setup of a general-purpose 
prototype built to evaluate the possibilities of the conical diffraction ef- 
fect in full-field imaging. This device can, in one of its operating modes, 
shape the PSF for the whole image acquired by the sensor in one frame- 
time, so it is applicable in full-scene imaging devices and for a broad 
range of working conditions. 

The rest of the paper is structured as follows. Section 2 outlines 
the theory behind the image restoration using multiple images ob- 
tained with different PSFs and describes the optical setup of the sen- 
sor. Section 3 shows the results from both simulations and real images, 
which are discussed in Section 4 . Finally, Section 5 draws some conclu- 
sions. 

2. Materials and methods 

2.1. Reconstruction method 

The problem of calculating an approximated version of the original 
image, from the recorded image is called deconvolution. It was Ghiglia 
back in 1984 [18] who first proposed a multi-kernel approach to this 
problem by combining the information acquired from different images 
with different transfer functions. The idea behind this method is to re- 
cover the information lost due to the zeros present in the transfer func- 
tions if they are located at different positions. 

For simplicity, let us consider a linear imaging system. The recorded 
image I ( x, y ) can be expressed as the convolution of the original image 
O ( x, y ) and the PSF of the imaging sensor h ( x, y ) plus an additive noise 
b ( x, y ): 

𝐼 ( 𝑥, 𝑦 ) = 𝑂 ( 𝑥, 𝑦 ) ∗ ℎ ( 𝑥, 𝑦 ) + 𝑏 ( 𝑥, 𝑦 ) . (1) 

This equation can be rewritten in the frequency domain by taking 
the Fourier Transform (FT), denoted by ̂ : 

𝐼 ( 𝜔 𝑥 , 𝜔 𝑦 ) = �̂� ( 𝜔 𝑥 , 𝜔 𝑦 ) × �̂� ( 𝜔 𝑥 , 𝜔 𝑦 ) + ̂𝑏 ( 𝜔 𝑥 , 𝜔 𝑦 ) , (2) 

where �̂� is the modulus of the OTF (also known as the modulation 
transfer function – MTF) and acts as a filter, transmitting only partially 
the object spatial frequencies. In the multi-kernel approach, we have a 
set of images of the same scene each one obtained with a different PSF 
(kernel), so that: 

𝐼 𝑘 ( 𝜔 𝑥 , 𝜔 𝑦 ) = �̂� ( 𝜔 𝑥 , 𝜔 𝑦 ) ×𝐻 𝑘 ( 𝜔 𝑥 , 𝜔 𝑦 ) + ̂𝑏 ( 𝜔 𝑥 , 𝜔 𝑦 ) . (3) 

The reconstruction problem (finding an estimation of O from the 
set of I k ), with or without a-priori information about H k , is ill posed 

so small variations in the input can cause very large variations in the 
output, rendering the solution unacceptable. In 2000, Goudail et al [19] 
proposed to use an algorithm based on the Tikhonov filter regularized 
by a Laplacian function based on the works of Reeves and Mersereau 
[20] , using: 

�̂� 

′( 𝜔 𝑥 , 𝜔 𝑦 ) = 

∑𝑛 
𝑘 =1 𝐻 𝑘 

∗ 
( 𝜔 𝑥 , 𝜔 𝑦 ) × 𝐼 𝑘 ( 𝜔 𝑥 , 𝜔 𝑦 ) ∑𝑛 

𝑘 =1 |𝐻 𝑘 ( 𝜔 𝑥 , 𝜔 𝑦 ) |2 + 𝜆|𝐿 ( 𝜔 𝑥 , 𝜔 𝑦 ) |2 , (4) 

where �̂� 

′ is the estimated FT of the object, 𝐻 𝑘 are the FT of the PSFs 
(kernels), 𝐼 𝑘 are the FT of the images obtained for each kernel k ( n is 
the total number of kernels), and L is the transfer function of a classical 
Laplacian filter, being 𝜆 a weight parameter. The operator ∗ denotes the 
complex conjugate. This is the same approach followed by Simon and 
Haeberlé [14] . 

There are other methods for deconvolution such as the well-known 
Richardson-Lucy iterative method [21,22] , which is non-linear and, 
therefore, could potentially produce better results. However, its itera- 
tive nature may result in problems with the stop criterion. For the sake 
of simplicity, we will concentrate on the regularized Tikhonov algorithm 

in this study. 
As an important note, image contrast can be defined in several dif- 

ferent ways, depending on the situation. Along this paper, we use the 
definition which considers contrast as the ratio between the luminance 
difference and the average luminance, which could be calculated for in- 
stance -Michelson contrast- as ( I max − I min )∕( I max + I min ) . The contrast of 
a given feature inside an image is given as a percentage of the global 
image contrast. All the image results are shown after performing a linear 
scaling of the data to the full range of the grey colormap, which does 
not alter this value. Therefore, a black pixel represents the minimum 

value in the image and a white pixel represents the maximum, unless 
specifically stated, in which case a scale bar will be displayed alongside 
the image. 

2.2. Prototype for multiple PSF imaging 

To obtain images of the same scene with different PSFs, a prototype 
based on conical diffraction principle has been employed. 

A light beam traveling along one of the optic axes of a biaxial crys- 
tal, such as LBO (lithium triborate - LiB 3 O 5 ) or KTP (potassium titanyl 
phosphate - KTiOPO 4 ), spreads into a narrow hollow cone due to in- 
ternal conical diffraction and emerges as a hollow cylinder. See, for in- 
stance, [23] for a complete description of this phenomenon. For the 
usual configuration, a set of concentric rings with different amplitude 
and radial positions are observed at the focal image plane. These are the 
well-known Poggendorff Rings. The semi angle of the cone depends on 
the principal refractive indices of the crystal. 

However, for thin crystals (0.4 mm instead of the usual thickness of 
25–30 mm reported in most of the literature), the radius of the emerging 
cylinder, R o , is smaller than the entry beam size and the Poggendorff
Rings do not develop, but the emerging beam has a varying polarization 
state, which generates interesting and usable optical effects. 

Under paraxial approximation and for a uniformly polarized and cir- 
cularly symmetric input beam of wavenumber k , the electrical field at 
the focal plane is (in polar coordinates 𝜌, 𝜙): 

𝑬 ∝
( 

𝑩 𝑜 ( 𝜌) + 𝑩 1 ( 𝜌) cos 𝜙 𝑩 1 ( 𝜌) sin 𝜙
𝑩 1 ( 𝜌) sin 𝜙 𝑩 𝑜 ( 𝜌) − 𝑩 1 ( 𝜌) cos 𝜙

) 

𝑷 , (5) 

where P is the polarization vector and B o , B 1 are defined as: 

𝑩 𝑜 ( 𝜌) = 𝑘 ∫ 𝑑𝑈 𝑈 𝑎 𝑜 ( U ) cos ( 𝑘 𝑅 𝑜 𝑈 ) 𝐽 𝑜 ( 𝑘𝑈𝜌) , 

𝑩 1 ( 𝜌) = 𝑘 ∫ 𝑑𝑈 𝑈 𝑎 𝑜 ( U ) sin ( 𝑘 𝑅 𝑜 𝑈 ) 𝐽 1 ( 𝑘𝑈𝜌) , (6) 

where the function a o (U) represents the incident light distribution in 
Fourier space and J o and J 1 are the Bessel functions [15] . 
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