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a b s t r a c t 

In recent years, the efficiency of digital image correlation (DIC) methods has attracted increasing attention be- 

cause of its increasing importance for many engineering applications. Based on the classical affine optical flow 

(AOF) algorithm and the well-established inverse compositional Gauss–Newton algorithm, which is essentially a 

natural extension of the AOF algorithm under a nonlinear iterative framework, this paper develops a set of fast 

convolution-based DIC algorithms for high-efficiency subpixel image registration. Using a well-developed fast 

convolution technique, the set of algorithms establishes a series of global data tables (GDTs) over the digital im- 

ages, which allows the reduction of the computational complexity of DIC significantly. Using the pre-calculated 

GDTs, the subpixel registration calculations can be implemented efficiently in a look-up-table fashion. Both nu- 

merical simulation and experimental verification indicate that the set of algorithms significantly enhances the 

computational efficiency of DIC, especially in the case of a dense data sampling for the digital images. Because the 

GDTs need to be computed only once, the algorithms are also suitable for efficiently coping with image sequences 

that record the time-varying dynamics of specimen deformations. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Subset-based digital image correlation (DIC) numerically determines 
a series of best-matching subsets between reference and deformation 
images by comparing the gray intensities of the images ’ speckle pat- 
terns using some continuity condition such as the well-adopted affine 
shape function [1–7] . So far, several classes of image registration algo- 
rithms, such as optical flow gradient-based algorithms [8–10] , Newton- 
Raphson (NR) iterative algorithms [11–13] , and weight window-based 
algorithms [14–16] , have been developed and are employed extensively 
in many engineering measurement fields [17–28] . In recent years, the 
focus has been on improving the computational efficiency of DIC algo- 
rithms because the traditional algorithms are usually computationally 
complicated, which makes it difficult to meet specific speed require- 
ments [29–30] . Some strategies for improving the efficiency reduce the 
computational burden related to the initial guess when searching for 
the integer-pixel correlation [31–33] . Several algorithms have been de- 
veloped that are based on basis functions or sum-table techniques and 
decrease the computational complexity of the zero-normalized cross- 
correlation coefficient criterion that is usually employed to calculate the 
integer-pixel correlations [34–35] . Other algorithms enhance the com- 
putational efficiency of the sub-pixel registration calculations in DIC by 
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avoiding redundant computations [36] . The recently introduced inverse 
compositional Gauss–Newton (IC-GN) algorithm speeds up the sub-pixel 
registration matching by not having to update the Hessian matrix in 
each iterative step and therefore significantly lowering the correspond- 
ing computational complexity [37–40] . 

With the development of parallel computing based on graphics pro- 
cessing units (GPUs) and the corresponding compute unified device ar- 
chitecture (CUDA) platform developed by NVIDIA, it becomes possi- 
ble to apply certain hardware-based high-performance computing tech- 
nologies to accelerate the correlation matching between digital images 
before and after deformation. Some researchers have employed the 
GPU-based parallel computing strategy to improve the efficiency of the 
integer-pixel correlation calculations. The computational speed of the 
fast Fourier transform (FFT)-based cross-correlation matching can be en- 
hanced by a factor of ∼20 [41–43] . Zhang et al. [44] developed a paral- 
lel DIC method that provides a high-efficiency correlation computation 
based upon NVIDIA’s CUDA platform. The method performs the integer- 
pixel initial guess estimation using an FFT-based cross-correlation al- 
gorithm, while the sub-pixel registration calculation was implemented 
using the well-established IC-GN algorithm. Pan et al. [45] developed 
a superfast DIC algorithm by modifying the reliability-guided displace- 
ment tracking strategy using a multithread computing technique. Based 
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on the integral image technique and fast interpolation method, Jiang et 
al. [40] proposed a high-efficiency computational strategy for the IC- 
GN algorithm. Likewise, Shao et al. [46] developed a three-dimensional 
DIC method by employing the efficient IC-GN algorithm in combination 
with a seed point-based parallel method to monitor the pulse of humans 
in a real-time way. 

In this paper, we propose an alternative method for speeding up the 
DIC calculations by combining a set of convolution algorithms based 
on the well-developed FFT with the classical affine optical flow or IC- 
GN algorithms. Due to the efficient implementation of the FFT-based 
fast convolution between correlation subsets, the presented algorithm 

effectively improves the computational efficiency without sacrificing 
the measurements ’ accuracy and precision. Likewise, the computational 
complexity of the proposed algorithms appears to be less relevant to 
both the size of the correlation subsets and the density of the sampling 
points of the digital images, which makes it more suitable for large-scale 
global deformation measurements based upon a dense data sampling. 
It is anticipated that the set of algorithms can provide a new coping 
strategy for implementing the DIC approach with real-time function in 
combination with the high-performance GPU-based parallel computing 
technique. 

2. Theoretical framework and implementation of algorithms 

To begin with, we define the gray intensities of the subsets with 
(2 M + 1) × (2 M + 1) pixels on the reference (undeformed) and target (de- 
formed) images as F ( X, Y ) and G ( x, y ), respectively, where ( X, Y ) and ( x, 

y ) are the location coordinates within their respective subsets. To obtain 
a more robust noise-proof performance and at the same time minimize 
the effect of the potential scaling and offset of the illumination lighting 
on the measurement results [11,15] , we replace F ( X, Y ) and G ( x, y ) with 
the zero-mean normalized subsets f ( X, Y ) and g ( x, y ), respectively. This 
can be expressed as { 

𝑓 ( 𝑋, 𝑌 ) = 

[
𝐹 ( 𝑋, 𝑌 ) − 𝐹 𝑚 

]
∕Δ𝐹 

𝑔 ( 𝑥, 𝑦 ) = 

[
𝐺 ( 𝑥, 𝑦 ) − 𝐺 𝑚 

]
∕Δ𝐺 

(1) 

with ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

𝐹 𝑚 = 

1 
(2 𝑀+1) 2 

𝑋 0 + 𝑀 ∑
𝑋= 𝑋 0 − 𝑀 

𝑌 0 + 𝑀 ∑
𝑌 = 𝑌 0 − 𝑀 

𝐹 ( 𝑋, 𝑌 ) 

𝐺 𝑚 = 

1 
(2 𝑀+1) 2 

𝑋 0 + 𝑀 ∑
𝑋= 𝑋 0 − 𝑀 

𝑌 0 + 𝑀 ∑
𝑌 = 𝑌 0 − 𝑀 

𝐺( 𝑥, 𝑦 ) 

Δ𝐹 = 

√ 

𝑋 0 + 𝑀 ∑
𝑋= 𝑋 0 − 𝑀 

𝑌 0 + 𝑀 ∑
𝑌 = 𝑌 0 − 𝑀 

[
𝐹 ( 𝑋, 𝑌 ) − 𝐹 𝑚 

]2 
Δ𝐺 = 

√ 

𝑋 0 + 𝑀 ∑
𝑋= 𝑋 0 − 𝑀 

𝑌 0 + 𝑀 ∑
𝑌 = 𝑌 0 − 𝑀 

[
𝐺( 𝑥, 𝑦 ) − 𝐺 𝑚 

]2 
(2) 

where F m 

and G m 

are the mean values of the gray intensities of the 
reference and deformed subsets. The coordinates ( x, y ) and ( X, Y ) can 
be related via the following affine shape function: [ 
𝑥 

𝑦 

] 
= 

[ 
𝑋 

𝑌 

] 
+ 

[ 
𝑢 𝑢 𝑋 𝑢 𝑌 
𝑣 𝑣 𝑋 𝑣 𝑌 

] ⎡ ⎢ ⎢ ⎣ 
1 

Δ𝑋 

Δ𝑌 

⎤ ⎥ ⎥ ⎦ (3) 

with p = [ u, u X , u Y , v, v X , v Y ] 
T , where ( u, v ) denotes the displacement 

vector of the subset center located at ( X 0 , Y 0 ) on the reference image, 

u X =𝜕 u / 𝜕 X, u Y =𝜕 u / 𝜕 Y, v X =𝜕 v / 𝜕 X , and v Y =𝜕 v / 𝜕 Y are the derivatives of 
the displacement components with respect to the coordinates X and Y 

on the reference configuration, and X − X 0 =ΔX and Y − Y 0 =ΔY are the 
components of the distance to the subset center ( X 0 , Y 0 ). To quantify the 
similarity between the reference and deformed images, we define a cost 
function for an arbitrary location on a digital speckle image as 

𝑒 
(
𝑥, 𝑦 ; 𝑋 0 , 𝑌 0 ; 𝐩 

)
= 𝑔 ( 𝑥, 𝑦 ) − 𝑓 ( 𝑋, 𝑌 ) (4) 

To explore the inherent relationship of the gray intensity of a single 
material point over the reference and deformed images, we expand f ( X, 

Y ) using Eq. (3) as a first-order Taylor’s series, which is expressed as 
follows: 

𝑓 ( 𝑋, 𝑌 ) ≈ 𝑓 ( 𝑥, 𝑦 ) − 𝑓 𝑋 ×
(
𝑢 + 𝑢 𝑋 Δ𝑋 + 𝑢 𝑌 Δ𝑌 

)
− 𝑓 𝑌 ×

(
𝑣 + 𝑣 𝑋 Δ𝑋 + 𝑣 𝑌 Δ𝑌 

)
(5) 

where ( f X ,f Y ) stands for the derivatives of the image’s gray intensity. 
Substituting Eq. (5) into Eq. (4) yields 

𝑒 
(
𝑥, 𝑦 ; 𝑋 0 , 𝑌 0 ; 𝐩 

)
= 𝑔 ( 𝑥, 𝑦 ) − 𝑓 ( 𝑥, 𝑦 ) + 𝑓 𝑋 ×

(
𝑢 + 𝑢 𝑋 Δ𝑋 + 𝑢 𝑌 Δ𝑌 

)
+ 𝑓 𝑌 ×

(
𝑣 + 𝑣 𝑋 Δ𝑋 + 𝑣 𝑌 Δ𝑌 

)
(6) 

Subsequently, we establish a vector of the cost functions correspond- 
ing to each subset of size (2 M + 1) × (2 M + 1), i.e., 

𝐞 
(
𝑥, 𝑦 ; 𝑋 0 , 𝑌 0 ; 𝐩 

)
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑒 
(
− 𝑀 + 𝑥 0 , − 𝑀 + 𝑦 0 ; 𝑋 0 , 𝑌 0 ; 𝐩 

)
𝑒 
(
− 𝑀 + 𝑥 0 , − 𝑀 + 𝑦 0 + 1; 𝑋 0 , 𝑌 0 ; 𝐩 

)
⋮ 

𝑒 
(
𝑀 + 𝑥 0 , 𝑀 + 𝑦 0 ; 𝑋 0 , 𝑌 0 ; 𝐩 

)
⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

(7) 

where ( x 0 , y 0 ) denotes the subset center of the deformed image, which 
can be calculated beforehand by certain well-developed integer-pixel 
searching algorithms [13,34,35,41,42,43] . As a vector that includes 
(2 M + 1) × (2 M + 1) elements, Eq. (7) gives the deviations between f ( X, 

Y ) and g ( x, y ) on all pixel locations within an arbitrary subset. 

2.1. Affine optical flow (AOF) method 

The AOF method usually requires that the following total cost func- 
tion holds over each particular subset of size (2 M + 1) × (2 M + 1) on the 
reference image [2,37,47] : 

𝐄 𝐀 
(
𝑋 0 , 𝑌 0 ; 𝐩 

)
= 

[
𝐞 
(
𝑥, 𝑦 ; 𝑋 0 , 𝑌 0 ; 𝐩 

)]𝑇 [𝐞 (𝑥, 𝑦 ; 𝑋 0 , 𝑌 0 ; 𝐩 
)]

= 

𝑋 0 + 𝑀 ∑
𝑋= 𝑋 0 − 𝑀 

𝑌 0 + 𝑀 ∑
𝑌 = 𝑌 0 − 𝑀 

[
𝑒 
(
𝑥, 𝑦 ; 𝑋 0 , 𝑌 0 ; 𝐩 

)]2 
(8) 

Minimizing the total cost function requires 

∇ 

[
𝐄 𝐀 

(
𝑋 0 , 𝑌 0 ; 𝐩 

)]
= 

2 
𝑋 0 + 𝑀 ∑

𝑋= 𝑋 0 − 𝑀 

𝑌 0 + 𝑀 ∑
𝑌 = 𝑌 0 − 𝑀 

{[
𝑒 
(
𝑥, 𝑦 ; 𝑋 0 , 𝑌 0 ; 𝐩 

)]
×𝜕 

[
𝑒 
(
𝑥, 𝑦 ; 𝑋 0 , 𝑌 0 ; 𝐩 

)]
∕ 𝜕𝐩 

}
= 𝟎 (9) 

Considering that 𝜕 [ 𝑒 ( 𝑥, 𝑦 ; 𝑋 0 , 𝑌 0 ; 𝐩 ) ]∕ 𝜕 𝐩 = [ 𝑓 𝑋 , 𝑓 𝑋 Δ𝑋, 𝑓 𝑋 Δ𝑌 , 𝑓 𝑌 , 
𝑓 𝑌 Δ𝑋, 𝑓 𝑌 Δ𝑌 ] 𝑇 and substituting Eq. (6) into Eq. (9) gives us 

𝐂 𝐴 𝐩 = 𝐑 or 𝐩 = 𝐂 

−1 
𝐴 
𝐑 (10) 

The coefficient matrix C A and the residual vector R can be expressed 
as 

𝐂 𝐴 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∑∑
𝑓 2 
𝑋 

∑∑
𝑓 2 
𝑋 
Δ𝑋 

∑∑
𝑓 2 
𝑋 
Δ𝑌 

∑∑
𝑓 𝑋 𝑓 𝑌 

∑∑
𝑓 𝑋 𝑓 𝑌 Δ𝑋 

∑∑
𝑓 𝑋 𝑓 𝑌 Δ𝑌 ∑∑

𝑓 2 
𝑋 
Δ𝑋 

∑∑
𝑓 2 
𝑋 
Δ𝑋 

2 ∑∑
𝑓 2 
𝑋 
Δ𝑋Δ𝑌 

∑∑
𝑓 𝑋 𝑓 𝑌 Δ𝑋 

∑∑
𝑓 𝑋 𝑓 𝑌 Δ𝑋 

2 ∑∑
𝑓 𝑋 𝑓 𝑌 Δ𝑋Δ𝑌 ∑∑

𝑓 2 
𝑋 
Δ𝑌 

∑∑
𝑓 2 
𝑋 
Δ𝑋Δ𝑌 

∑∑
𝑓 2 
𝑋 
Δ𝑌 2 

∑∑
𝑓 𝑋 𝑓 𝑌 Δ𝑌 

∑∑
𝑓 𝑋 𝑓 𝑌 Δ𝑋Δ𝑌 

∑∑
𝑓 𝑋 𝑓 𝑌 Δ𝑌 2 ∑∑

𝑓 𝑋 𝑓 𝑌 
∑∑

𝑓 𝑋 𝑓 𝑌 Δ𝑋 

∑∑
𝑓 𝑋 𝑓 𝑌 Δ𝑌 

∑∑
𝑓 2 
𝑌 

∑∑
𝑓 2 
𝑌 
Δ𝑋 

∑∑
𝑓 2 
𝑌 
Δ𝑌 ∑∑

𝑓 𝑋 𝑓 𝑌 Δ𝑋 

∑∑
𝑓 𝑋 𝑓 𝑌 Δ𝑋 

2 ∑∑
𝑓 𝑋 𝑓 𝑌 Δ𝑋Δ𝑌 

∑∑
𝑓 2 
𝑌 
Δ𝑋 

∑∑
𝑓 2 
𝑌 
Δ𝑋 

2 ∑∑
𝑓 2 
𝑌 
Δ𝑋Δ𝑌 ∑∑

𝑓 𝑋 𝑓 𝑌 Δ𝑌 
∑∑

𝑓 𝑋 𝑓 𝑌 Δ𝑋Δ𝑌 
∑∑

𝑓 𝑋 𝑓 𝑌 Δ𝑌 2 
∑∑

𝑓 2 
𝑌 
Δ𝑌 

∑∑
𝑓 2 
𝑌 
Δ𝑋Δ𝑌 

∑∑
𝑓 2 
𝑌 
Δ𝑌 2 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(11) 

and 
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