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A novel wavefront reconstruction algorithm for radial shearing interferometer (RSI) is proposed in this paper. 

Based on the shearing relationship of RSI, an interpolation coefficient matrix is established by the radial shearing 

ratio and the number of discrete points of test wavefront. Accordingly, the expanded wavefront is characterized 

by the interpolation coefficient matrix and the test wavefront. Consequently the test wavefront can be calculated 

from the phase difference wavefront. The numerical simulation is conducted to confirm the correctness of the 

proposed algorithm. Compared with the previous wavefront reconstruction methods, the proposed algorithm is 

more accurate and stable. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Radial shearing interferometry (RSI), as a high accurate interference 
measurement technology, is an effective and popular tool for measuring 
the wavefront phase distortion [1–6] , reconstructing the near-field dis- 
tribution from a high power laser beam [7–9] , and inspecting the corneal 
topographic [10–12] . Compared with the traditional double-beam inter- 
ference measurement technology, it is not necessary to build a reference 
light path with a high quality reference surface. In addition, RSI adapts 
a common optical path configuration. Therefore, it is not sensitive to 
the environment vibration. 

In recent years, a variety of approaches have been proposed to re- 
trieve the test wavefront from the phase difference wavefront in RSI. In 
2007, Jeong used Zernike polynomials as the basis functions to calculate 
the Zernike coefficients of test wavefront [13] . A similar approach was 
proposed by Gu in 2011 [14] . In 2015, Kewei employed Legendre poly- 
nomials as the basis functions to calculate the Legendre coefficients of 
test wavefront over a square area [15] . To cope with off-axis test wave- 
front with general aperture shapes, Tian proposed a Gram-Schmidt or- 
thogonalization method in 2016 [16] . In practice, the number of Zernike 
polynomial terms cannot be appropriately predicted to fit the wavefront 
in advance. However, errors caused by the mode cross-talk and aliasing 
cannot be eliminated when polynomials are used as basic functions to 
reconstruct wavefronts [15–23] . 

Apart from the methods described above, Li proposed an iterative 
method to reconstruct the test wavefront in 2002 [24] . Later, Li im- 
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proved this method to treat a certain amount of lateral shear in two 
orthogonal directions [25] . The main idea of this method is to interpo- 
late and iterate the phase difference wavefront to satisfy the convergent 
condition. Analyzing the different radial shearing ratio, the accuracy of 
reconstruction depends on the shape of test wavefront. When the test 
wavefront is irregular, the reconstruction error will increase to about 
0.1–0.2 wavelength [26] . 

These methods mentioned above can be split into two categories: 
modal method [13–16, 19–23] and zonal method [27–32] . The former 
is based on the polynomial fitting. And the latter is depended on the 
assumption that the change between the two adjacent discrete points is 
linear. In order to reconstruct the test wavefront by our proposed algo- 
rithm, a shearing relationship of RSI is determined by the radial shearing 
ratio and the number of discrete points when the wavefront is sampled. 
Subsequently, an interpolation coefficient matrix can be obtained. So 
the expanded wavefront can be described by the matrix and the test 
wavefront. Next, the shearing relationship is changed into the relation- 
ship between the test wavefront and the phase difference wavefront. 
Thus, the test wavefront can be calculated. The proposed algorithm is 
neither based on the polynomial fitting nor the interpolation and itera- 
tion of the phase difference wavefront so the errors caused by the mode 
cross-talk and aliasing can be avoided and the accuracy of reconstruc- 
tion can be unaffected by the high-frequency signal of test wavefront. In 
this paper, a numerical simulation is conducted to prove the correctness 
of the algorithm. The effects of the radial shearing ratio and the num- 
ber of discrete points are analyzed. Compared with existing wavefront 
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Fig. 1. Schematic of RSI with a square aperture. 

reconstruction methods, the proposed algorithm is more accurate and 
stable. 

2. Mathematical model 

2.1. Principle of radial shearing interferometer 

A typical radial shearing interferometer is illustrated in Fig. 1 . The 
focal lengths of the lens L 1 and L 2 are f 1 and f 2 , respectively, and the 
radial shearing ratio of the RSI is s = f 2 / f 1 < 1. A collimated test beam 

with a square aperture enters the radial shearing interferometer and the 
wavefront W ( x, y ) will be tested. The test wavefront entered through 
the beam splitter (BS) is contracted in the counterclockwise direction as 
the contracted wavefront W 1 ( x, y ) (solid line). And the test wavefront 
reflected off the BS is expanded in the opposite direction as the expanded 
wavefront W 2 ( x, y ) (dash line). The expanded wavefront and contracted 
wavefront interfere within their common area, and a fringe pattern is 
generated, as shown in the bottom of Fig. 1 . The contracted wavefront 
can be treated as W ( x, y ) whose domain of definition ( x, y ) is changed 
into ( x / s, y / s ). Similarly, the expanded wavefront within the common 
area can be regarded as W ( x, y ) whose domain of definition ( x, y ) is 
changed into ( xs, ys ). The phase difference between the two wavefronts 
can be defined as 

Δ𝑊 ( 𝑥 ∕ 𝑠, 𝑦 ∕ 𝑠 ) = 𝑊 ( 𝑥 ∕ 𝑠, 𝑦 ∕ 𝑠 ) − 𝑊 ( 𝑥𝑠, 𝑦𝑠 ) . (1) 

In addition, there is only the coordinate scaling transformation be- 
tween the contracted wavefront and the test wavefront. As a matter of 
fact, the phase distribution or figure of contracted wavefront is essen- 
tially the same as that of the test wavefront. Henceforth, assuming that 
the test wavefront W ( x, y ) is equal to the contracted wavefront W ( x / s, 
y / s ), which means that the coordinate variables both x and y multiply s 
in Eq. (1) . Thus, Eq. (1) can be rewritten as 

Δ𝑊 ( 𝑥, 𝑦 ) = 𝑊 ( 𝑥, 𝑦 ) − 𝑊 

(
𝑥 𝑠 2 , 𝑦 𝑠 2 

)
. (2) 

Since the expanded wavefront is the copy of a portion of W ( x, y ), we 
can apply Dirac delta function to sample W ( x, y ) to obtain the expanded 
wavefront. Consequently, the expanded wavefront can be expressed as 

𝑊 

(
𝑥 𝑠 2 , 𝑦 𝑠 2 

)
= ∫

∞

−∞ ∫
∞

−∞
𝛿
(
𝑥 − 𝑥 𝑠 2 , 𝑦 − 𝑦 𝑠 2 

)
𝑊 ( 𝑥, 𝑦 ) 𝑑 𝑥𝑑 𝑦 , (3) 

where 𝛿 is the Dirac delta function within the range of [ − xs 2 , xs 2 ] and 
[ − ys 2 , ys 2 ]. Therefore, Eq. (2) can be expressed as 

Δ𝑊 ( 𝑥, 𝑦 ) = 𝑊 ( 𝑥, 𝑦 ) − ∫
∞

−∞ ∫
∞

−∞
𝛿
(
𝑥 − 𝑥 𝑠 2 , 𝑦 − 𝑦 𝑠 2 

)
𝑊 ( 𝑥, 𝑦 ) 𝑑 𝑥𝑑 𝑦 . (4) 

2.2. Discrete model 

In practical measurement, the interferogram is digitized by the com- 
puter. Assuming that the test wavefront W ( x, y ) is sampled by a discrete 
matrix with the size of N × N , which is defined within a square aperture. 
For RSI, according to the radial shearing ratio s , the test wavefront can 

be expanded to W 2 ( x, y ). As shown in Fig. 2 (a), the shaded portion of 
test wavefront W ( x, y ) will be naturally enlarged to an expanded wave- 
front denoted by W ( xs 2 , ys 2 ), which has an equal area to that of W ( x, 

y ) and is illustrated within the bold solid line. As is known, W ( xs 2 , ys 2 ) 
should also be changed into the size of N × N due to the requirement of 
the discrete data operation, which will be described in detail in the fol- 
lowing. For the digitized radial shearing interferograms, the phase dif- 
ference wavefront ∆W ( x, y ) at the discrete points in the common area 
of the test wavefront and the expanded wavefront can be reconstructed 
by proper phase extraction and phase-unwrapping techniques. ∆W ( x, y ) 
is also sampled with the size of N × N , as shown within the bold solid 
line. Namely, ∆W ( x, y ), W ( x, y ) and W ( xs 2 , ys 2 ) are all defined within 
the same area. Generally, we can denote the discrete points of the wave- 
fronts by the notation ( i, j ), and the ranges of i and j are 1 ≤ i ≤ N and 
1 ≤ j ≤ N , respectively. The wavefront data in the i th row and j th column 
of ∆W ( x, y ), W ( x, y ) and W ( xs 2 , ys 2 ) can be accordingly represented by 
∆W ij , W ij and W 

s 
ij , respectively. The vectors ∆W , W and W 

s are indexed 
serially row by row of ∆W ij , W ij and W 

s 
ij with the dimension of N 

2 ×1, 
respectively. Thus, the matrix form of Eq. (2) can be expressed as 

Δ𝑾 = 𝑾 − 𝑾 

𝑠 , (5) 

In Fig. 2 (a), the data of W ( x, y ) over the shaded area can be described 
by the Kronecker delta function 𝛿pq which is the discrete version of the 
Dirac delta function 𝛿. The discrete data over the shaded area is defined 
as Eq. (6) and denoted by the notation ( m, n ). Assuming Ns 2 is the in- 
teger portion of N × s 2 , the ranges of m and n are 1 ≤ m ≤ Ns 2 and 1 ≤ 

n ≤ Ns 2 , respectively. The relationships between i and m, j and n are 
i = m + ( N − Ns 2 )/2 and j = n + ( N − Ns 2 )/2, respectively. The wavefront 
data in the m th row and n th column over the shaded area is represented 
by W mn . The vector �̃� is indexed serially row by row of W mn with the 
dimension of ( Ns 2 ) 2 ×1. 

�̃� = 𝜹𝒑 𝒒 ⋅𝑾 . (6) 

The matrix form of Kronecker delta function 𝛿pq , which is denoted 
by the notation ( p, q ) with the dimension of ( Ns 2 ) 2 ×N 

2 , is given by 

𝛿𝑝𝑞 = 

⎧ ⎪ ⎨ ⎪ ⎩ 

1 , 𝑝 = ( 𝑚 − 1 ) 𝑁 𝑠 2 + 𝑛 ; 
𝑞 = 𝑁 ( 𝑚 − 1 ) + ( 𝑁 + 1 ) 

(
𝑁 − 𝑁 𝑠 2 

)
∕2 + 𝑛, 

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(7) 

where the ranges of p and q are 1 ≤ p ≤ ( Ns 2 ) 2 and 1 ≤ q ≤ N 

2 , respectively. 
In order to implement the discrete data operation, W ( xs 2 , ys 2 ) should 

also be interpolated to a matrix with the size of N × N based on the data 
over the shaded area in W ( x, y ). By investigating the RSI, we found that 
the interpolation of W ( xs 2 , ys 2 ) is not only related to the radial shearing 
ratio s but also the number of discrete points N 

2 . Assuming that the 
number of discrete points satisfies the accuracy of measurement and 
the change between the two adjacent discrete points is linear [27–32] . 

In the one-dimensional situation, the test wavefront W ( x ) is consid- 
ered as an arbitrary line, as illustrated in Fig. 2 (b), the dots " •" denote 
W n , the circles "o" denote W 

s 
j , and the distance between two adjacent 

discrete points of W n is defined as one (unit distance). The distance be- 
tween two adjacent discrete points of W 

s 
j can be given as 

𝑑 = 

(
𝑁 𝑠 2 − 1 

)
∕ ( 𝑁 − 1 ) . (8) 

According to the bilinear interpolation, W n can be redistributed in 
the same domain of definition of test wavefront so that W 

s 
j can be ob- 

tained as 

𝑊 

𝑠 
𝑗 
= 𝑑 𝑛 +1 𝑊 𝑛 + 𝑑 𝑛 𝑊 𝑛 +1 , (9) 

where d n = | d ( j − 1) − n | and d n + 1 = | n + 1 − d ( j − 1)| are the interpolation 
coefficients. Thus, Eq. (9) can be rewritten as 

𝑊 

𝑠 
𝑗 
= 

[
𝑑 𝑛 +1 𝑑 𝑛 

]
⋅
[
𝑊 𝑛 𝑊 𝑛 +1 

]𝑇 
. (10) 

Therefore, the expanded wavefront can be calculated and its matrix 
form can be expressed as 

𝑾 

𝑠 
1 = 𝑫 1 ⋅𝑾 1 , (11) 
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