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A B S T R A C T

Traditionally the multiple phase method has been considered as an essential tool for phase information recovery.
The in-quadrature phase method that theoretically is an alternative pathway to achieve the same goal failed in
actual applications. The authors in a previous paper dealing with 1D signals have shown that properly
implemented the in-quadrature method yields phase values with the same accuracy than the multiple phase
method. The present paper extends the methodology developed in 1D to 2D. This extension is not a straight
forward process and requires the introduction of a number of additional concepts and developments. The
concept of monogenic function provides the necessary tools required for the extension process. The monogenic
function has a graphic representation through the Poincare sphere familiar in the field of Photoelasticity and
through the developments introduced in this paper connected to the analysis of displacement fringe patterns.
The paper is illustrated with examples of application that show that multiple phases method and the in-
quadrature are two aspects of the same basic theoretical model.

1. Introduction

In a previous paper [1], the authors developed a 1D model of fringe
patterns analysis based on the general Theory of Signal Analysis. The
current paper extends the 1D model to 2D. The extension to a higher
dimension reviews basic concepts of image analysis and adds additional
derivations to the subject matter of [1]. These derivations are needed to
extend the conclusions arrived in [1] to the case of 2-D. The extension
from 1D to 2D is not trivial and this paper will be limited to 2-D images
that represent 2D displacement fields. The extension of the derivations
of 2D to 3D again is not straightforward and cannot be covered in a
single journal paper. The paper will focus on the process of information
extraction. Image information is recorded as levels of gray that should
be converted into data providing displacement fields and displacement
derivatives in the case of deformed bodies.

In the developments of fringe pattern analysis, the signals in
quadrature technique associated with the Hilbert transform was
postulated as a procedure to get phase [2]. In the current literature,
the signals in quadrature method is considered as a symbolic procedure
but not a practical tool to get phase. Currently, phase retrieval is based
on the multiple phase method and there is an extensive literature on
this subject including the challenging extension to dynamic cases.

In [1], it was shown that the Hilbert transform provides phase
information with the same accuracy that the multiple phase method

and both methods are two possible approaches based on the same basic
theory of fringe pattern analysis. Since the Hilbert transform is
applicable to one dimension, the extension to 2-D requires additional
theoretical developments. In this paper it will be shown that the signals
in quadrature technique presented in [1] for 1D signals can be extended
to 2D signals. The procedure can be applied to any type of fringe
pattern whether it contains cluster of closed fringes or not. Hence,
fringe pattern information can be retrieved from one single image
recorded under the more general conditions.

2. Two dimensional signals

Fig. 1a illustrates a 2D sinusoidal signal. It has an amplitude and
period p, as is the case in 1D. In 2D, one additional degree of freedom is
present, local orientation. There are two possible ways to define the
orientation: one can choose the direction corresponding to the locus of
equal intensity (yellow line of Fig. 1) and the angle this line makes with
the x-axis or by the normal n in Fig. 1 and the angle θ that the normal n
makes with the axis x. The yellow line shows a line of equal intensity
(phase) while the vector r identifies a point P of phase ϕ in the uniform
field of the 2D sinusoidal signal.

In [1], it is shown that data analysis in one dimension requires the
description of gray levels in terms of 2D complex functions (analytical
functions), that leads to the introduction of the concept of phasor:
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The symbol “⇒” indicates a vector in the complex plane. A phasor in
the complex plane is characterized by two separate pieces of informa-
tion: an amplitude related to the light intensity at the considered point
and a phase representing the optical path followed by the recorded
wave front from a selected reference point where the phase is assumed
to be zero. The classical definition of phase in optics is,

ϕ x πδ x
p

( ) = 2 ( )
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where δ(x) is the optical path and p is the pitch of the sinusoidal
function, unit of measure utilized to evaluate a path length and
converting distances into angles. Then, along the normal n, Eq. (1)
becomes,
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In 2D, the phase becomes a function of two independent variables,
distance r and fringe orientation θ. According to the schematic of Fig. 2
and reported nomenclature, the carrier has the equation,

I r θ I I ψ r θ( , ) = + cos ( , )0 1 (4)

where,

ψ r θ πf r θ α( , ) = 2 ( ) +c (5)

Fig. 3 illustrates the carrier signal along a given line. The initial
signal is a sinusoidal carrier but after modulation it is transformed into
a modulated frequency signal that will include multiple harmonics.

As it is shown in Fig. 4, by filtering it is possible to separate the
background from the signal. Each harmonic has its own phase and its
own amplitude, and the signal is the sum of many phasors.

In the literature of isothetic lines (moiré fringes), the fringes are
represented by Eq. (6),

I x I I ϕ x( ) = + cos ( )0 1 (6)

where the background amplitude is a constant Io, the first harmonic is
another constant I1 and the phase ϕ(x) contains the displacement
information. This model has been successful in the implementation of
the multiple phase method as it has been mentioned but has not worked
for the in-quadrature signals before the approach introduced in [1]. In
what follows this apparent anomaly will be analyzed.

3. Actual signals and theoretical model signals

Fig. 5 shows a good quality fringe pattern cross-section. This pattern
presents the main characteristic of real optical signals extracted from a
sensor after a filtering process has smoothed out the quantization
effects in space and intensity. The signal is both amplitude and
frequency modulated and the background is not a constant. These
changes are consequence of the electro-optical devices utilized to
obtain the image.

The FFT of such fringe patterns shows [1] that the frequency
spectrum contains terms corresponding to the geometrical configura-
tion of the analyzed surface. The FFT includes also the different
harmonics corresponding to frequency modulation, not only the first
harmonic shown, for example, in Fig. 4 but also higher order
harmonics. To these terms are added the terms corresponding to the
amplitude modulation of the fringes. All these terms overlap in the FFT
and to extract information corresponding to the displacements from the
rest of the information it is necessary to apply methods that can
accurately separate the different components.

The answer to the question of separating the different components
contained in a signal is given by the Bedrosian-Nuttal's theorems [3–5].
A graphical interpretation of the theorems is given the spectrum shown
below in Fig. 6. The figure shows the components of the spectrum of a
fringe signal whose spectrum satisfies the Bedrosian-Nuttal's theorems.
From the spectrum it is possible to conclude that the frequencies of
background and amplitude modulation terms must be much smaller
than the frequencies of the signal and that the spectra of the harmonics
must also be separated, for a more detailed analysis see [1].

There is still one important point to justify, the representation of the
optical signal by a single phasor. For that purpose, it is necessary to
introduce the concept of analytic signals that is tied with the Hilbert
transform concept.

The Hilbert transform is defined by the following expression,
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The Hilbert transform of Ip(η), where η is a dummy variable of
integration, is the Cauchy principal value indicated in Eq. (7) by PV and
can be thought as the convolution of the signal with the function 1/px.

Fig. 7 illustrates the meaning of the Hilbert transform; it is a phase
transformation that converts cosine into sine. The bottom part of the
figure gives the symbolic representation in the FT. The Hilbert trans-
form takes the original signal, expressed as level of gray or intensity in
some scale, and associates the gray level with an analytical function
(see Fig. 8):

x x xI ( ) = I ( ) + jI ( )p qsp (8)

where the symbol “j” denotes the imaginary versor, Ip(x) is the recorded
signal (in-phase signal) and Iq(x) is the in-quadrature signal that
provides the phase,

Fig. 1. Sinusoidal 2D signal. Ip intensity at a point of coordinates (r, θ). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 2. Original sinusoidal signal.
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