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a b s t r a c t 

This paper presents an automatic and robust framework for simultaneously registering pairwise point clouds and 

identifying the correctness of registration results. Given two partially overlapping point clouds with arbitrary 

initial positions, a view-invariant local feature descriptor is utilized to build sparse correspondence. A geometry 

constraint sample consensus (GC-SAC) algorithm is proposed to prune correspondence outliers and obtain an 

optimal 3D transformation hypothesis. Furthermore, by measuring the similarity between the estimated local 

and global transformations, a transformation consistency verification method is presented to efficiently detect 

potential registration failures. Our method provides reliable registration correctness verification even when two 

point clouds are only roughly registered. Experimental results demonstrate that our framework exhibits high 

levels of effectiveness and robustness for automatic registration. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

3D point cloud registration is a vital process for integrating multiple 

partial point clouds into a complete 3D model, and has been widely used 

in many 3D scanning systems [1–6] . In these 3D scanning systems, the 

prevailing registration methods rely on artificial markers attached to the 

measured surfaces, or on tracking the pose of the 3D sensors [1] . How- 

ever, in many applications such as robot navigation, remote sensing, 

cultural artifacts protection, and large-scale surface modeling, attach- 

ing marks is often not allowed, and usage of external locating devices is 

inconvenient. 

In recent years, automatic 3D registration methods have been ex- 

tensively researched because they do not require manual intervention 

or external assistance [7–15] . Given two partially overlapping point 

clouds with arbitrary initial positions, automatic 3D registration meth- 

ods can estimate an optimal rigid transformation that best aligns the 

point clouds [8,13] . Available automatic point cloud registration meth- 

ods [9–14] typically consist of coarse and fine registration steps. The 

coarse registration step obtains an approximate initial transformation 

[14,16,17] , which will be further refined by the subsequent fine regis- 

tration step using the iterative closest point (ICP) algorithm [18] and 

its variants [19,20] . In general, coarse registration utilizes 3D local fea- 

ture descriptors to build sparse correspondence, and such 3D local fea- 

ture descriptors are often defined in a transformation-invariant manner. 
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A number of 3D local feature descriptors have been proposed to en- 

code the geometric information of a local surface into high-dimensional 

features [21] . Johnson and Hebert [22] proposed a spin image by 

spinning a plane around the normal and computing the number of 

points falling into the image bins. Similarly, Chen and Bhanu [23] pro- 

posed a local surface patch (LSP) by integrating normal angles and 

curvature-based quantities into a 2D histogram. Both of these meth- 

ods use the point-normal as the local reference axis (LRA), while the 

descriptiveness of LRA-based local feature descriptors is greatly lim- 

ited because only the surface normal is used as a reference; there is 

a gauge of freedom in the rotation around the axes that must be elim- 

inated [16] . Based on this consideration, many local reference frame 

(LRF)-based local feature descriptors have been proposed to enhance 

their descriptiveness [12,16,17,24] . In these proposed descriptors, the 

LRF is usually constructed using Eigen analysis of the neighbor points 

in a spherical support. Using sets of local features extracted for each 

point cloud, point correspondences are established by comparing the 

similarity of local features. However, mismatches (outliers) may widely 

exist owing to various nuisances, including sensor noise, partial over- 

lap, varying point resolution, and similar local surface shapes [21] . 

The existence of mismatches usually makes traditional transform es- 

timation methods (such as least squares estimators) inapplicable. In 

this case, robust estimators must be applied to obtain reliable point 

correspondences [25] . 
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During the past few decades, various estimators have been proposed 

for robust transform estimation; for example, RANSAC [26] and MLE- 

SAC [27] are two widely used estimators. They both use resampling to 

obtain an outlier-free subset to estimate a reliable and rigid transforma- 

tion. The difference is that MLESAC chooses the solution that maximizes 

the likelihood rather than the inlier count; RANSAC does the opposite. 

These methods work well when the outlier ratio is small, but they tend 

to degrade severely if the proportion of outliers is large; the resampling 

efficiency is affected strongly by the outlier ratios. Thus, additional fea- 

ture searching constraints must be employed to prune the vast search 

space, and facilitate feature correspondence searching. Moreover, in 

many real-world registration tasks, it is common to have two sequen- 

tial point clouds with very small or even no overlap regions, which can 

result in a very large fraction of outliers in the point correspondences 

set. To the best of our knowledge, no existing estimator can guarantee 

an outlier-free subset when the percentage of outliers is greater than 

90% [28] , which will inevitably lead to false coarse registration results. 

False registration results without prompt detection will further result in 

shape artifacts in the final models. As a result, verifying the correctness 

of coarse registration results is vital for a robust point cloud registration 

process. 

Existing registration correctness verification methods are typically 

based on local surface consistency principles [9,11,14] . The local sur- 

face consistency is a measure of the degree to which the overlap re- 

gions of two registered point clouds can represent the same object sur- 

face. Specifically, local surface consistency can be measured by calculat- 

ing the overlap distance or checking the visibility consistency between 

the registered point clouds. The former directly calculates the average 

distance between the surfaces in overlap regions [9,14] , and the latter 

checks the visibility consistency of two surfaces along the line of sight 

from each viewpoint [11,14] . In these two methods, the point clouds 

must first be closely registered; thus, they can only be used for verifying 

the correctness of fine registration results. However, if a false coarse reg- 

istration result is used as the initial pose, the fine registration step will 

inevitably fail. The ICP iteration process greatly increases computation 

costs, especially when the point cloud size is very large. 

According to the above analysis, the key to automatic and ro- 

bust 3D point cloud registration lies in integrating robust coarse reg- 

istration with effective registration correctness verification. Prior work 

[10,12,17,25] focused more on improving the performance of coarse 

registration algorithms, while neglecting the importance of registra- 

tion correctness verification. In existing automatic registration methods, 

pairwise point clouds are first registered together, and a global model is 

constructed based on the pairwise registration results. A critical weak- 

ness of such pipelines that we addressed is the low precision of coarse 

registration results. Owing to various nuisances, coarse registration al- 

gorithms are error-prone, which leads to shape artifacts in the final mod- 

els. Actually, registration correctness verification has been proven to be 

extremely important for a practical automatic point cloud registration 

system [9] . In this work, we present a robust 3D point cloud registra- 

tion framework for automatically registering pairwise point clouds and 

identifying the correctness of coarse registration results. The framework 

brings pairwise point clouds into rough alignment without the need for 

assumptions about the initial positions and overlap information. Then, 

to classify coarse registration results as either correct or incorrect, they 

are directly checked with a novel registration failure detection method. 

Coarse registrations verified as correct are taken as the initialization to 

the ICP variants for further iterative refinements. Based on the fine reg- 

istration results, an accurate global model can finally be constructed. 

The main advantages of our framework can be embodied by the 

following two aspects. First, a view-invariant local feature descriptor 

with both high descriptiveness and strong robustness is used for build- 

ing sparse correspondence; a robust transform estimation algorithm, re- 

ferred to as GC-SAC (geometry constraint sample consensus), is also 

proposed to remove correspondence outliers and estimate a reliable 

3D transformation. The algorithm utilizes the rigidity of a point cloud 

surface as the geometry constraint to (1) obtain a group of distance- 

compatible feature correspondences, (2) ensure that the resampling ef- 

ficiency is not affected by the outlier ratios, and (3) speed up the trans- 

formation hypothesis generation process. Second, we present a novel 

registration failure detection method based on the transformation con- 

sistency principle. Compared with prior local surface consistency-based 

methods, our method can provide reliable verification of registration 

correctness, even when two point clouds are only roughly registered 

together; this greatly reduces total computation costs. 

2. Robust pairwise registration using view-invariant local feature 

descriptor 

In this section, we describe the process for robustly registering pair- 

wise point clouds using view-invariant local feature descriptors. 

2.1. Keypoints detection 

The solution to the coarse registration problem lies in finding cor- 

rect point correspondences between pairwise point clouds. However, for 

each pre-registered point cloud, which may contain millions of points in 

some instances, it is impractical to establish one-to-one correspondence 

for each point inside; the 3D local feature extraction and matching pro- 

cess will greatly increase computation time. Furthermore, the surround- 

ing 3D geometric shapes between any two neighbor points do not differ 

significantly; their computed local features are generally very similar. 

Thus, it is essential to detect a limited number of keypoints that can 

effectively describe the point cloud surfaces. 

Many keypoint detection methods have been proposed for 3D recog- 

nition applications [29] . While they mostly focus on distinctiveness, 

only a small number of keypoints can be detected, and those detected 

keypoints spread only in convex or concave areas. In comparison, in the 

coarse registration problem the overlap regions are not known until two 

point clouds are registered together. Therefore, it is vital for the detected 

keypoints to spread uniformly over the entire point cloud surface; this 

prevents random bias in the feature matching steps. In this study, we 

adopt the shape index measure [23] to detect the keypoints. For a point 

p i in point cloud P , its shape index is defined as: 

𝑆𝐼( 𝑝 𝑖 ) = 
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where k 1 ( p i ) and k 2 ( p i ) are, respectively, the maximum and minimum 

principal curvatures of point p i . With this definition, all local region 

shapes can be mapped into the interval [0, 1]. Point p i is detected as the 

keypoint only when its shape index SI ( p i ) satisfies one of the following 

two conditions: 

𝑆𝐼( 𝑝 𝑖 ) ≥ max 
𝑞∈𝑁( 𝑝 𝑖 ) 

𝑆𝐼 ( 𝑞) 𝑎𝑛𝑑 𝑆𝐼 ( 𝑝 𝑖 ) ≥ (1 + 𝛼) 𝜇( 𝑝 𝑖 ) (2) 
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N ( p i ) is the points in the neighbor area of point p i , N i is the total num- 

ber of points in N ( p i ), 𝜇( p i ) is the average shape index value within 

the neighbor area of p i , and 𝛼 and 𝛽 are two scalar factors that deter- 

mine the final keypoint amounts. Detected keypoints lying in the bound- 

aries will be excluded to avoid systematic bias in the constructed LRFs 

( Section 2.2 ). 

Fig. 1 shows the keypoint detection results of two point clouds from 

model Dragon , in which the detected keypoints are represented with red 

points and the point clouds are transformed into 3D meshes for better 

visualization. Our detected keypoints are concentrated in highly pro- 

truded and highly curved areas; these keypoints spread quite uniformly 

over the entire surface, and only highly planar areas are filtered so as 
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