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Image hiding technique based on time-averaged elliptic oscillations is proposed in this paper. The scheme is based
on a single cover image representing a cross-moiré grating. The secret image is embedded into the background
moiré grating by using a specially developed random scrambling algorithm. The secret is leaked in a form of a
pattern of time-averaged moiré fringes when the cover image is elliptically oscillated. Also, the secret is leaked
only if the parameters of elliptic oscillations are set to predefined values. Computational experiments are used to

validate the proposed technique and to demonstrate the efficiency of its implementation.
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1. Introduction

A dichotomous secret image hiding scheme based on time-averaged
techniques used for the registration of the oscillating encoded cover im-
age is a well-known approach in geometric moiré optics [1,2]. Condi-
tionally, such an image hiding scheme can be entitled as dynamic vi-
sual cryptography (DVC) [2,3]. Classical visual cryptography (VC) is a
cryptographic technique which allows visual information (pictures or
text) to be encrypted in such a way that the decryption can be per-
formed solely by the human visual system [4]. The decryption of the
secret in a VC scheme does not require a computer. However, any VC
scheme is a visual secret sharing scheme — the secret image is broken
up into a number of shares so that only someone with all shares could
decrypt the image [5,6]. Each share is usually printed on a separate
transparency, and decryption is performed by simply overlaying the
shares.

The DVC scheme is similar to the VC scheme in the sense that a com-
puter is not required for performing the decryption of the secret. The se-
cret image is embedded into one cover image, which must be oscillated
in order to leak the secret [1,2]. Time-averaging optical techniques are
used to register the oscillating cover image (the exposure time must be
much longer than a single period of periodic oscillations) [1]. Thus, the
DVC scheme does not employ image sharing — a single cover image is
used instead.

Any image hiding scheme — VC or DVC has its own drawbacks. Com-
plex means are used to eliminate the probability of cheating in VC
schemes [7-9]. Special chaotic scrambling algorithms are required to
embed the secret into the single cover image in DVC schemes [1].
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The security of DVC schemes can be improved by generating such
stochastic moiré gratings that the secret image is leaked from only
when the cover image is oscillated according to a periodic (but non-
harmonic) time function — but the secret is not leaked at any amplitude
or any direction of uni-directional harmonic oscillations [2]. Chaotic
time functions [3], special moiré grating optimization techniques [10],
deformable moiré gratings [11] can be used to further increase the se-
curity of DVC schemes.

All up-mentioned DVC schemes are based on uni-directional oscilla-
tions of the cover image. However, it is well known that generation of
uni-directional oscillations can be a challenging problem even for har-
monic oscillations — especially when the considered engineering struc-
tures comprise many degrees of freedom or are nonlinear [12]. A simple
uni-directional forcing of such structures can result into complex (even
chaotic) trajectories of motion [13]. In this paper we consider the one
of the simplest cases of such effects — elliptical oscillations.

On the other hand, the employment of elliptical oscillations opens
a completely new approach for the generation of the cover image. Uni-
directional oscillations enable to exploit a simple and straightforward
strategy for the construction of the cover image — every column (row)
of such an image can be interpreted as an isolated one-dimensional ar-
ray of pixels. In principal, DVC schemes based on uni-directional os-
cillations can be considered as one-dimensional problems (except the
chaotic scrambling algorithm which is used to hide the secret image —
but does not affect the structure of any of the one-dimensional grat-
ings) [1]. Such DVC schemes based on uni-directional oscillations are
highly sensitive to changes of the direction of oscillation — the secret
image becomes non-interpretable if the angle between the orientation
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of one-dimensional moiré gratings and the direction of one-directional
oscillations becomes higher than 5 degrees [1].

It is clear that the construction of the cover image for a DVC scheme
based on elliptic oscillations must be based on a completely different
approach - this becomes a full two-dimensional problem. The main ob-
jective of this paper is to develop such a DVC scheme based on elliptical
oscillations.

2. Preliminaries

One-dimensional moiré grating can be interpreted as a harmonic
variation of grayscale color [12]:
F(x) = % + %cos <27”x) %
where x is the longitudinal coordinate, A is a pitch of moiré grating in the
state of equilibrium. Numerical value 0 of function F(x) corresponds to
black color, 1 - to white color, values from the interval (0, 1) correspond
to an appropriate grayscale level.

Let us consider that moiré grating in Eq. (1) is harmonically oscil-
lated around the state of equilibrium according to the deflection func-
tion:

u(t) = asin (ot + @), )

where a is the amplitude of harmonic oscillations; w is the cyclic fre-
quency and ¢ is the phase. One-dimensional time averaged image reads
[1,121:
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where T is the exposure time; J, is the zero order Bessel function of the
first kind.

Note that the resulting time averaged image does not depend on w.
However, since the exposure time cannot be infinite in any physical
experiment, the cyclic frequency becomes an important factor. A large
number of periods of oscillation must fit into a finite exposure time in
order to minimize optical effects introduced by the fractional part of
the last period (unless the exposure time is exactly fitted to the period
of oscillation) [1]. The situation is even more complex from the biomed-
ical point of view [11]. A naked eye follows the slow oscillation of the
cover image, and human visual system is not able to interpret the time
averaged image then. The holistic human visual system (including eyes,
nerves, visual cortex) can interpret the time averaged image only when
the cyclic frequency is high enough (usually over 30 Hz) and eye balls
cannot longer track the cover image [11].

Time averaged image becomes grey when the amplitude of harmonic
oscillations is equal to:

A
a=

=227

“

where r; is the ith root of J,. This optical effect is illustrated in Fig. 1.
Stationary one-dimensional moiré grating is shown at the left side of
Fig. 1(a) (where the amplitude « = 0). Note that the moiré grating is
constructed only in a finite interval 6 < x < 26 and the white back-
ground is assumed elsewhere. Time averaged image of an oscillating
one-dimensional moiré grating (note that the time averaged image does
not depend on the frequency of oscillations) is visualized as a column of
pixels at every discrete value of the amplitude a (Fig. 1(a)). The graph

of J0<27”a) is shown in Fig. 1(b); dashed vertical lines mark roots of Jj.

It can be clearly seen that the centerlines of time-averaged moiré fringes
coincide with the roots of J, (Fig. 1(a) and (b)).
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Fig. 1. Pattern of time averaged fringes at A= 1.5: (a) an array of grayscale one-
dimensional time averaged images at monotonously increasing amplitude of transverse
harmonic oscillations; (b) zero order Bessel function of the first kind J,(27a/A); dashed
lines interconnect the centers of time averaged fringes and roots of the Bessel function.

3. Two-dimensional moiré gratings
3.1. Simple moiré gratings in two dimensions

An array of parallel black and white lines on a flat surface can be
described by the following formula [12]:

+ l cos <2—”x>,

2 A
where x is the longitudinal coordinate; 4 is a pitch along the moiré
grating; y-axis coincides with the direction of the constitutive grating
lines. In analogy to the one-dimensional grating, we assume that the
surface performs harmonic oscillations as a non-deformable body. Uni-
directional oscillations of the two-dimensional non-deformable surface
along the x-axis yield:

Fooy =5 )
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Time averaged image becomes a uniformly gray surface at a = iri.
On the other hand, oscillations along the y-axis do not alter the static
image:

lim —
T

1 Mo 27 11 27
-#5‘;,7/0 (3+5c0s (%) )ar=3+ 5005 (Fx).

This is a well-known effect in experimental mechanics that defor-
mations along constitutive lines of a grating do not change the optical
image of the surface [12,14].

T
/ F(x,y— asint)dt
0
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3.2. Two-dimensional cross-gratings; unidirectional oscillations

A static two-dimensional cross-grating is described by:

1 + L os (2—”x>cos 2z

2 2 A u-)

where A - is the pitch of the grating in the horizontal direction; u is the
pitch in the vertical direction. An example of a two-dimensional moiré
cross-grating with 4 = 0.75 and x4 = 0.5 is illustrated in Fig. 2(a).

If a cross-grating in Eq. (8) is oscillated along the x- and y-axis, the
resulting time-averaged image reads:

Fy(x,y) = (8)
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