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a b s t r a c t 

Recently, a new kind of image encryption approach using compressive sensing (CS) and double random phase 

encoding has received much attention due to the advantages such as compressibility and robustness. However, 

this approach is found to be vulnerable to chosen plaintext attack (CPA) if the CS measurement matrix is re- 

used. Therefore, designing an efficient measurement matrix updating mechanism that ensures resistance to CPA 

is of practical significance. In this paper, we provide a novel solution to update the CS measurement matrix by 

altering the secret sparse basis with the help of counter mode operation. Particularly, the secret sparse basis is im- 

plemented by a reality-preserving fractional cosine transform matrix. Compared with the conventional CS-based 

cryptosystem that totally generates all the random entries of measurement matrix, our scheme owns efficiency su- 

periority while guaranteeing resistance to CPA. Experimental and analysis results show that the proposed scheme 

has a good security performance and has robustness against noise and occlusion. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Compressive sensing (CS) has recently emerged as an efficient signal 

acquiring technique, which argues that the sparse signal can be faith- 

fully reconstructed from a very small set of samples [1–3] . Namely, 

thanks to the CS sampling process, the signal acquisition and compres- 

sion can be achieved simultaneously. Interestingly, the CS framework 

can be used for security purpose [4,5] . By respectively considering the 

original signal, the sampled measurements and the sensing matrix as 

the corresponding plaintext, the ciphertext and the key, the CS frame- 

work can be viewed as a symmetric cipher. Although it has been proven 

that the CS framework can achieve computational security under certain 

assumption [6,7] , the energy information of the plaintext signal is in- 

evitably leaked by the CS measurement [8] . Therefore, when exploiting 

the CS to protect the privacy of image in optical system, the well known 

optical technique double random phase encoding (DRPE) [9,10] is con- 

sidered to be concatenate to the CS sampling process to overcome the 

abovementioned defect of energy information leakage. So far, several 

proposals adopted the combined CS-and-DRPE architecture [11–15] . 

This kind of approach has received great attention due to the following 

advantages. Firstly, CS is usually implemented in optical configuration, 

what makes the integration of CS and DRPE a very easy work. Secondly, 
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the combination of the two cryptographic primitives (i.e., CS and DRPE) 

could enhance the security level of the integrated cryptosystem. What’s 

more, the advantages of CS-based cryptosystem, such as compressibility, 

robustness, can be reserved in the combined CS-and-DRPE cryptosystem. 

However, to ensure security, the schemes proposed in [11–15] must 

work in a “one-time-sampling ” manner. Namely, the CS measurement 

matrix can never be reused, otherwise, the measurement matrix would 

be revealed by chosen-plaintext attack (CPA). The corresponding attack 

model will be given in Section 2.1 . Based on this fact, many research 

communities investigate the ways to ensure resistance to CPA for 

CS-based cryptosystem [16–20] . For example, in [16] , Huang et al. 

proposed a CS-based image encryption scheme that achieves CPA- 

security by adding some conventional block cipher components, which 

is not suitable for the optical circumstance. In [17] , Fay presented 

a general model of refreshing the CS sensing matrix for every new 

signal by introducing the counter mode operation to the CS paradigm. 

In fact, our work is inspired by Fay’s model, but in a very different 

configuration. In [18] , Zhang et al. proposed to jointly quantize and 

diffuse the CS measurements so as to improve the security of the CS 

framework. In [19] , Zhang et al. proposed a bi-level protected CS-based 

encryption model, where the measurement matrix is constructed to be 

non-RIP matrix so as to ensure the resistance to CPA. For more about 
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the security issue of CS-based cryptosystem, interested readers may 

refer to [20] for a review of CS in information security. 

In this paper, we aim to propose a CPA-resistant image encryption 

scheme under the CS-and-DRPE architecture. Specially, based on the 

observation that there are too much storage consumption and time 

consumption to generate a completely fresh CS measurement matrix for 

every new signal, we focus on how to design an efficient CS measure- 

ment matrix updating mechanism with low complexity. In our scheme, 

this is achieved by introducing the counter mode operation into the CS 

sampling process. In more detail, the measurement matrix updating is 

realized in an additionally confidential CS model, which exploits the 

data sparsity constraint of the CS reconstruction problem and the lim- 

ited sparsifying property of reality-preserving discrete fractional cosine 

transform (RPFrCT) matrix. In this way, the measurement matrix updat- 

ing is closely related to the secret sparse basis (i.e., the RPFrCT matrix) 

and can be achieved by altering the order of the RPFrCT matrix. Obvi- 

ously, compared with the approach that updates the CS measurement 

matrix by totally generating all the random entries, our scheme is more 

efficient for practical applications. The numerical simulations demon- 

strate that the proposed scheme can achieve a remarkable security per- 

formance while maintaining the robustness against noise and occlusion. 

The rest of this paper is organized as follows. In the next section, 

some preliminaries are given. The proposed scheme is described in 

Section 3 . In addition, experimental results and security analyses are 

given in Section 4 . The last section concludes this paper. 

2. Preliminaries 

2.1. Compressive sensing 

The CS framework involves a sampling process and a reconstruction 

process. Considering a 1D sparse signal v = [ v 1 , v 2 ,..., v N ] 
T to be 

sampled, the CS sampling process is done by a non-adaptive linear 

projection y = 𝚽v , where 𝚽 ∈ R 

M ×N ( M < N ) is the measurement matrix, 

and y ∈ R 

M is the measurement vector. The CS theory states that if 𝚽
satisfies the restricted isometry property (RIP) of a certain order, the 

sparse signal �̂� = [ ̂𝑣 1 , ̂𝑣 2 , ..., ̂𝑣 𝑁 

] 𝑇 can be recovered from y by solving an 

l 1 -minimization problem defined as follows, 

�̂� = arg min ‖𝐯 ‖1 𝑠.𝑡. 𝐲 = 𝚽𝐯 . (1) 

It is worth noting that when applying CS to 2D image with bulk data 

size, sampling the whole image as a stacked vector under conventional 

CS framework may result in a dramatically large sized measurement ma- 

trix and a large scale reconstruction problem, which is often expensive 

in practice. To reduce the storage and computational complexity, one of 

the common solutions is to exploit the parallel CS [21] paradigm, where 

the 2D image is sampled and reconstructed column by column indepen- 

dently. More precisely, considering an image of 2D matrix X ∈ R 

N ×N , let 

x i ∈ R 

N denote the i -th column of X , and 𝚽 ∈ R 

M ×N be the measurement 

matrix. Then, the sampling process of parallel CS can be expressed as 

𝐲 𝑖 = 𝚽𝐱 𝑖 , ( 𝐲 𝑖 ∈ 𝑅 

𝑀 , 𝑖 = 1 , … , 𝑁) . (2) 

In this way, the whole measurement is represented as Y = [ y 1 , y 2 ,..., 

y N ]. Moreover, since real image data is rarely sparse, an N ×N sparse 

representation basis 𝚿 that is incoherent with the measurement matrix 

is often required to transform the image into sparse signal, i.e., s i 
= 𝚿− 1 x i . In this way, the sparse signal can be reconstructed by the 

following l 1 -minimization problem defined as follows, 

�̂� 𝑖 = arg min ‖‖𝐬 𝑖 ‖‖1 𝑠.𝑡. 𝐲 𝑖 = 𝚽𝐱 𝑖 = 𝚽𝚿𝐬 𝑖 = 𝐀 𝐬 𝑖 , ( 𝑖 = 1 , … , 𝑁 ) , (3) 

where A = 𝚽𝚿 is referred as the sensing matrix. After reconstructing 

the sparse signal S = [ s 1 , s 2 ,..., s N ], where i = 1,…, N , image data can 

be recovered via �̂� 𝑖 = 𝚿�̂� 𝑖 , and then the entire reconstructed image is 

formed as �̂� = [ ̂𝐱 1 , ̂𝐱 2 , ..., ̂𝐱 𝑁 

] . 
Note that the conventional parallel CS paradigm with measurement 

matrix re-using is vulnerable to CPA. As analyzed in cryptanalysis [22] , 

adversary has access to an encryption oracle that encrypts arbitrary 

plaintext to obtain the corresponding ciphertext. Considering the en- 

cryption process of parallel CS sampling process y i = 𝚽x i , where i = 1,…, 

N . If the adversary asks the encryption oracle to encrypt an artificial 

chosen plaintext x ′ i = [0,..., 0, 1 i ,0,..., 0] T by y ′ i = 𝚽x ′ i , then the i -th 

column of 𝚽 ∈ R 

M ×N could be revealed, since it is equivalent to the cor- 

responding ciphertext y ′ i . By repeating the above process from the first 

column to the last column, the whole secret measurement matrix could 

be revealed. Hence, we can conclude that the parallel CS-based cryp- 

tosystem with a fixed measurement matrix is not secure against CPA. 

Furthermore, the concatenation of DRPE followed by CS would not 

change the vulnerability mentioned above, since the DRPE technique is 

also found to be vulnerable to CPA [23–25] . In this case, adversary can 

treat the DRPE process as a matrix multiplication. Thus, the abovemen- 

tioned CPA is still feasible to crack the DRPE-combined scheme. The 

similar cryptanalysis work had already been proposed in [19] (detailed 

cracking process can be found in Section Ⅱ . C of [19] ). 

Intuitively, to address the abovementioned security issue, a straight 

forward solution is to update the measurement matrix for every new 

signal. Therefore, the updating mechanism of measurement matrix 

becomes a critical issue for secure use of CS paradigm. 

2.2. Reality-preserving fractional cosine transform 

Reality-preserving fractional cosine transform (RPFrCT) [26] is a 

parameterized transform derived from the discrete cosine transform 

(DCT), whose transform matrix of size N ×N can be expressed as 

𝐂 = 

1 √
𝑁 

𝜀 𝑘 cos 
( 

2 𝜋 (2 𝑛 + 1) 𝑘 
4 𝑛 

) 

, (4) 

where is n = 0,..., N − 1, k = 0,..., N − 1, 𝜀 0 = 1 and 𝜀 𝑘 = 

√
2 for k > 0. 

Moreover, the matrix C can be expressed as the form of 

𝐂 = 𝐔𝚲𝐔 

∗ , (5) 

where “. ∗ ” denotes matrix conjugate transposition, U = [ u 1 , u 2 ,..., u N ] 

consists of N orthonormal eigenvectors, 𝚲 = diag ( 𝜆0 ,..., 𝜆N − 1 ) is the 

diagonal matrix with element 𝜆n = exp ( j 𝜙n ), n = 0,..., N − 1. 

Thus, the discrete fractional cosine transform (DFrCT) matrix of 

order 𝛼 can be defined as the form of 

𝐂 𝛼 = 𝐔 𝚲𝛼𝐔 

∗ , (6) 

where 𝚲𝛼 is the 𝛼-th power of 𝚲. 

In our scheme, we implement the RPFrCT matrix by following the 

way proposed in [19] . More precisely, the implementation procedure 

can be described as follows: 

Step 1 : Construct a DFrCT matrix C 𝛼 of size N/2 ×N/2 . 

Step 2 : Construct a RPFrCT matrix R 𝛼 as the form 𝐑 𝛼 = 

[ Re ( 𝐂 𝛼) , − Im( 𝐂 𝛼) 
Im( 𝐂 𝛼) , Re( 𝐂 𝛼) 

] , where Re ( 𝑥 ) and Im ( 𝑥 ) return the real 

and imaginary part of compact value x , respectively. 

After that, the RPFrCT on a 1D real signal v = [ v 1 , v 2 ,..., v N ] 
T of 

length N can be achieved via y = R 𝛼v . The derivation about the reason 

can be summarized as follows: 

At first, assuming the length N of signal v is even, 

thus, we can construct a complex signal as the form of 

�̃� = [ 𝑣 1 + 𝑗 𝑣 1+ 𝑁∕2 , 𝑣 2 + 𝑗 𝑣 2+ 𝑁∕2 , ..., 𝑣 𝑁∕2 + 𝑗 𝑣 𝑁 

] 𝑇 . Then, a DFrCT can 

be achieved by using the DFrCT matrix C 𝛼 of size N/2 ×N/2 , i.e., 

�̃� = 𝐂 𝛼 �̃� . In this way, it holds that 

𝐲 = 𝐑 𝛼𝐯 = 

[ 
Re ( 𝐂 𝛼) , − Im ( 𝐂 𝛼) 
Im( 𝐂 𝛼) , Re( 𝐂 𝛼) 

] 
⋅
[ 
Re ( ̃𝐯 ) 
Im( ̃𝐯 ) 

] 
= 

[ 
Re ( 𝐂 𝛼) Re ( ̃𝐯 ) − Im( 𝐂 𝛼)Im( ̃𝐯 ) 
Im( 𝐂 𝛼) Re ( ̃𝐯 ) +Re( 𝐂 𝛼)Im( ̃𝐯 ) 

] 

= 

[
Re ( ̃𝐲 ) , Im( ̃𝐲 ) 

]𝑇 
Therefore, the reality-preserving transform is achieved by the above 

implementation. 
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